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Abstract

Atherosclerotic cardiovascular disease is currently the leading cause of death worldwide. Its pathophysiological basis includes endothelial

dysfunction, macrophage activation, vascular smooth muscle cell (VSMC) proliferation, lipid metabolism, platelet aggregation, and

changes in the gut microbiota. Salidroside has beneficial effects on atherosclerosis through multiple pathways. In this review, we

present studies on the regulatory effect of salidroside on atherosclerosis. Furthermore, we report the protective effects of salidroside
against atherosclerosis by ameliorating endothelial dysfunction, suppressing macrophage activation and polarization, inhibiting VSMC
proliferation, adjusting lipid metabolism, attenuating platelet aggregation, and modulating the gut microbiota. This review provides
further understanding of the molecular mechanism of salidroside and new ideas for atherosclerosis management.
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1. Introduction

With the aging of the population, the morbidity and
mortality of cardiovascular disease (CVD) remain high. In
China, the number of deaths due to CVD was nearly 3.97
million, and the prevalence of CVD was estimated to be
93.8 million in 2016 [1]. The common pathological basis
of CVD is atherosclerosis. The complex pathophysiologic
process of atherosclerosis includes dyslipidemia, oxidative
stress, endothelial dysfunction, thrombocyte aggregation
[2,3], foam cell formation and accumulation [4], and vascu-
lar smooth muscle cell (VSMC) migration and proliferation
[5]. Oxidative modification and subendothelial retention of
low-density lipoprotein cholesterol (LDL-C) represent the
initial events in atherogenesis [6]. Oxidized low-density
lipoprotein (Ox-LDL) enters the intima-media of the vascu-
lar wall and contributes to atherosclerotic plaque formation
and progression by inducing endothelial cell (EC) activa-
tion and dysfunction, macrophage foam cell formation, and
vascular smooth muscle cell (VSMC) migration and pro-
liferation [7]. At present, statins [8] and antiplatelet ther-
apy [9] are widely used to prevent atherosclerosis-related
complications, and the effect of these therapies has pros
and cons. For example, statins may lead to hepatotoxic-
ity and skeletal muscle toxicity [10], and antiplatelet ther-
apy inevitably leads to a risk of hemorrhage [11]. In re-
cent years, interest in the role of herbal plants in treating
CVD has grown. Chinese herbal medicine has long been
used for the treatment of atherosclerotic complications [12].
Many studies suggest that salidroside, which has low tox-
icity and few side effects, possesses a wide range of bio-
logical properties, such as inhibiting inflammation, regulat-
ing dyslipidemia, improving endothelial function [13—15],

suppressing macrophage phenotypic switching, decreasing
the proliferation of VSMCs and impairing the activation of
platelets. Thus, salidroside may be a valuable and promis-
ing drug candidate for the treatment of CVDs, but it is not
in widespread use in clinical practice. In particular, salidro-
side can influence the gut microbiota; however, the mech-
anism that drives this phenomenon remains unclear. In this
review, we provide an overview of the molecular mecha-
nism by which salidroside attenuates atherosclerosis. The
underlying mechanisms of salidroside in protecting against
atherosclerosis as shown in Fig. 1.

2. Effects of Salidroside on Ameliorating
Endothelial Dysfunction

Considerable evidence has suggested that dysfunc-
tion of the vascular endothelium plays a significant role
in atherosclerosis development and progression. First,
excessive reactive oxygen species (ROS) [16] and mal-
ondialdehyde (MDA) [17] can increase oxidative stress,
which is linked to endothelial dysfunction and atherogen-
esis. Second, due to decreases in nitric oxide (NO) and en-
dothelial nitric oxide synthase (eNOS) levels, endothelium-
dependent vasodilation is impaired, which confers a risk
of atherogenesis [18]. Third, endothelial-mesenchymal
transition (EndMT), a process in which ECs acquire
myofibroblast-like properties, is one of the main mecha-
nisms of atherogenesis that increases endothelial dysfunc-
tion [19]. Furthermore, increasing levels of apoptosis and
autophagy in ECs can also influence the development of
atherosclerosis. The activation of apoptosis [20] and py-
roptosis [21] in ECs can increase the levels of inflammatory
factors, such as ROS and caspase-1, and lead to vessel wall
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Fig. 1. The underlying mechanisms of salidroside in protecting against atherosclerosis. TC, total cholesterol; TG, triglyceride

(TG); LDL, low-density lipoprotein; NO, nitric oxide; HDL-C, high-density lipoprotein cholesterol; EndMT, endothelial-mesenchymal

transition; LPS, lipopolysaccharide.

inflammation, which may be involved in atherogenesis. On
the other hand, endothelial autophagy may prolong the sur-
vival of ECs by inhibiting endothelial apoptosis and has
antiatherogenic effects [22]. Excessive autophagy in ECs
can promote atherosclerotic plaque destabilization, which
leads to accelerated atherogenesis [23]. Overall, multiple
pathways work together to confer a high risk of endothe-
lial dysfunction and atherosclerosis. Therefore, improving
endothelial function is critical in the treatment and prog-
nosis of atherosclerosis. Endothelial activity regulated by
salidroside are summarized in Table 1.

2.1 Effects of Salidroside on Endothelial Oxidative Stress

A major cause of endothelial dysfunction is oxida-
tive stress. Salidroside plays a crucial role in downreg-
ulating endothelial oxidative stress not only by decreas-
ing the level of proinflammatory factors but also by in-
creasing the level of anti-inflammatory factors. First, ROS
have been shown to enhance oxidative stress in ECs [24],
which plays an important role in the signaling pathways
associated with endothelial dysfunction [25]. Li et al.
[26] found that the endothelial barrier in intermittent hy-
poxia (IH)-induced human coronary vein endothelial cell
was damaged by ROS, and salidroside (10 M or 100 uM,

2 h) pretreatment could inhibit ROS overproduction via
the cyclic adenosine monophosphate (cAMP)/protein ki-
nase A (PKA)/Ras homolog gene family member A (RhoA)
signaling pathway; thus, endothelial barrier function was
preserved. Second, noncanonical nuclear factor-xB (NF-
xB) plays an important role in endothelial inflammatory
responses [27]. It was reported that salidroside (50 uM
or 100 M, 24 h) exerted a protective effect on ECs by
activating adenosine monophosphate-activated protein ki-
nase (AMPK) phosphorylation and inhibiting the NF-xB
p65/NACHT, LRR, and pyrin domain-containing protein 3
(NLRP3) signaling pathway. In this way, salidroside (0.1
uM, 1 uM or 10 M, 1 h) can downregulate the levels
of proinflammatory factors, such as interleukin-6 (IL-6),
interleukin-1. (IL-1/), and tumor necrosis factor-ae (TNF-
«) [28]. Third, Zhao et al. [29] found that salidroside can
activate the AMPK/sirtuin-1 (SIRT1) pathway, which in-
hibits the level of MDA, an oxidative stress index, in Ox-
LDL-treated vein endothelial cells (HUVECS). Finally, su-
peroxide dismutase (SOD) and catalase (CAT), which are
key antioxidant enzymes that protect against ROS, can also
be influenced by salidroside. Zhu and others [30] investi-
gated the effects of different concentrations of salidroside
(0.1 uM, 1 uM or 10 uM, 24 h) on the activities of SOD
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Table 1. Endothelial activity regulated by salidroside.

Cell activity Inflammatory factors or receptors  Possible targeting pathways by SAL Effect
Endothelial oxidative stress ROS cAMP/PKA/RhoA Downregulate
IL-13, IL-6, TNF-« AMPK/NF-kB/NLRP3 Downregulate
ROS, MDA AMPK/SIRT1 Downregulate
SOD, CAT Nrf2 Upregulate
Endothelium-dependent contraction NO AMPK/PI3K/Akt/eNOS Upregulate
Nox2, ROS — Downregulate
Endothelial-mesenchymal transition NO KLF4/eNOS Downregulate
Endothelial apoptosis Bcel-xL miR-133a Upregulate
Caspase-3 — Downregulate
Endothelial pyroptosis Caspase-1, IL-13 — Downregulate
Endothelial autophagy LC3-1I/ LC3-1 AMPK-mTOR Upregulate
— SIRT1-FoxO1 Upregulate

ROS, Reactive oxygen species; cAMP, Cyclic adenosine monophosphate; PKA, Protein kinase A; RhoA, Ras homolog gene fam-
ily member A; IL-18, Interleukin-173; IL-6, Interleukin-6; TNF-c, Tumor necrosis factor-a; AMPK, AMP-activated protein kinase;
SIRT3, Sirtuin 3; NF-xB, Noncanonical nuclear factor-<B; NLRP3, pyrin domain-containing protein 3; SIRT1, Sirtuin-1; MDA, Mal-
ondialdehyde; SOD, superoxide dismutase; CAT, catalase; Nrf2, Nuclear factor-erythroid 2-related factor 2; NO, Nitric oxide; PI3K,
Phosphatidylinositol-3-kinase; Akt, Protein kinase B; eNOS, Endothelial nitric oxide synthase; Nox2, NADPH oxidases 2; KLF4,
Kruppel-like factor 4; Bel-xL, B-cell lymphoma-extra-large; miR-133a, MicroRNA-133a; LC3-11, Light chain 3-1I; LC3-I, Light chain
3-I; mTOR, Mammalian target of rapamycin; FoxO1, Forkhead box O1.

and CAT in hydrogen peroxide (H2O3)-treated HUVECs.
The results showed that salidroside significantly increased
cellular SOD and CAT levels, and the antioxidant effect
was not proportional to the concentration of salidroside. In
addition, this effect might be mediated by activating the
nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling
pathway.

2.2 Effects of Salidroside on Endothelium-Dependent
Contraction

Endothelium-dependent contraction (EDC) is also as-
sociated with endothelial dysfunction. EDC leads to va-
sospasm, which may exacerbate ischemia and hypoxia at
the beginning of atherogenesis [31]. It is well documented
that increased eNOS phosphorylation and expression can
enhance NO production to improve endothelial function
[32]. Xing et al. [33] administered different salidroside (1
uMor 10 uM, 30 min) concentrations to cultured HUVECs.
They found that salidroside could increase the adenosine
monophosphate (AMP)/adenosine triphosphate (ATP) ra-
tio, which can regulate the activity of AMPK by sequen-
tially depolarizing mitochondria. Thus, salidroside can up-
regulate NO production by activating the AMPK/protein ki-
nase B (Akt)/eNOS pathway, which can suppress EDC. In
another study [34], researchers found that salidroside (100
uM or 300 M, 1 h) partially ameliorated EDC caused by
homocysteine (Hcy) in rat aortic ECs. The researchers mea-
sured ROS generation and the expression of NADPH oxi-
dases 2 (Nox2), an oxidase subunit of nicotinamide ade-
nine dinucleotide phosphate (NADPH), and concluded that
salidroside could improve NO bioavailability to ameliorate
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EDC by decreasing the levels of ROS and Nox2.

2.3 Effects of Salidroside on Endothelial-Mesenchymal
Transition

EndMT can be exacerbated by inflammation, hypoxia,
and oxidative stress in the endothelium through the acti-
vation of TGF-3 signaling [19]. EndMT increases vascu-
lar permeability and disrupts endothelial barrier function
[35]. Therefore, LDL can easily accumulate under the vas-
cular endothelium, inducing the formation of atheroscle-
rotic plaques [36]. Moreover, EndMT-derived fibroblast-
like cells are associated with plaque instability [37], which
exacerbates the progression of atherosclerosis. Some stud-
ies have reported that reducing the activation of Kriippel-
like factor 4 (KLF4) can inhibit EndMT [38,39]. Decreas-
ing eNOS activity and phosphorylation results in low NO
production and can suppress EndMT [40]. Huang et al.
[41] showed that salidroside (10 pmol/L or 50 pmol/L,
2 h) could improve the eNOS/NO signaling axis in Hey-
induced EndMT while downregulating the expression lev-
els of KLF4. Therefore, they concluded that salidroside
could inhibit EndMT through the KLF4/eNOS signaling
pathway [41].

2.4 Effects of Salidroside on EC Death

Various forms of endothelial death, such as apopto-
sis [42], pyroptosis [43], and autophagy [44], can influence
the development and progression of atherosclerosis. First,
salidroside upregulates the expression of B-cell lymphoma-
extra large (Bcl-xL), an antiapoptotic protein, and inhibits
Ox-LDL-induced EC apoptosis [45]. Zhang et al. [46]
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used human coronary artery endothelial cell (HCAECs) to
analyze the effect of salidroside (100 uM, 24 h) on EC
apoptosis. They found that salidroside-mediated inhibi-
tion of apoptosis involved the upregulation of microRNA-
133a (miR-133) expression because Bcl-xL expression de-
creased when miR-133a was knocked down in ECs. This
result shows that salidroside may inhibit EC apoptosis by
upregulating miR-133a expression. Furthermore, Tan and
other researchers [47] demonstrated that salidroside (0.1, 1,
10 pg/mL, 2 h) could protect hypoxia-induced ECs from
apoptosis by inhibiting the activation of caspase-3, which
is known to be a typical marker of cell apoptosis [48].
Moreover, Xing et al. [49] found that salidroside (1 M
or 10 uM, 12 h) could suppress lipopolysaccharide (LPS)-
induced EC pyroptosis by impairing caspase-1 activation
and decreasing IL-1 release. It is well known that the light
chain 3-1I (LC3-II)/LC3-I ratio is related to the level of au-
tophagy [50]. According to Zheng et al. [51], salidroside
(100 M, 12 h) could exert antiapoptotic effects by increas-
ing autophagy. The salidroside pretreatment group exhib-
ited a higher LC3-II/LC3-I ratio than the HoO treatment
group. Moreover, the researchers also demonstrated that
salidroside (100 uM, 2 h) could markedly increase AMPK
phosphorylation but impair mammalian target of rapamycin
(mTOR) phosphorylation. These results suggested that
salidroside could protect ECs against autophagy by acti-
vating the AMPK-mTOR pathway. Finally, Zhu and oth-
ers [52] reported that salidroside could increase autophagy
through the SIRT1-Forkhead box O1 (FOXO1) axis. In this
way, salidroside can decrease oxidative stress in HUVECs.

Overall, salidroside can improve endothelial function
in many ways, such as through anti-inflammatory effects,
increasing the production of NO, inhibiting EndMT, and
regulating EC death. These findings support the clinical
importance of salidroside.

3. Effects of Salidroside on Macrophages

Macrophages play a critical role in the initiation
and progression of atherosclerosis. In the early stage of
atherosclerosis, macrophages can be recruited to the le-
sioned arterial wall by proinflammatory cytokines [53].
Macrophage activation is an essential event in early
atherosclerosis. Wang and colleagues [54] found that
salidroside (50, 100 or 50 ug/L, 24 h) could decrease
proinflammatory cytokines, which are released by acti-
vated macrophages, by inhibiting the mitogen-activated
protein kinase (MAPK)/NF-xB signaling pathway. Sec-
ond, macrophages can sense and take up lipid particles and
transform into foam cells through the upregulation of scav-
enger receptors, such as CD36, scavenger receptor Al (SR-
Al), and lectin-like Ox-LDL receptor-1 (LOX-1) [7]. In
advanced atherosclerosis, macrophage proliferation is an-
other crucial mechanism that increases the progression of
plaques [55]. Ni and other scholars [56] discovered that
salidroside (0.1, 1, 10 uM, 5 h) could attenuate the expres-

sion of LOX1 and lower lipid accumulation in Ox-LDL-
treated THP1 cells. These beneficial effects were partly
mediated by activating the MAPK/Akt signaling pathway.

Finally, studies have shown that different macrophage
phenotypes play different roles in atherosclerosis. It is
widely known that M1 macrophages play a proinflamma-
tory role in atherosclerosis, while M2 macrophages play
a preventive role [57-59]. Li ef al. [60] discovered that
salidroside (25~100 pug/mL, 12 h) could suppress the acti-
vation of M1 macrophages by downregulating the Notch1-
HESI signaling pathway. In this way, salidroside could
also attenuate the release of TNF-«, IL-6, IL-13, and
monocyte chemoattractant protein 1 (MCP-1) by impair-
ing proinflammatory M1 activation. In addition, arachi-
donic acid has been reported to be involved in inhibit-
ing M2 polarization [61], while STAT1 and NF-xB are
two important transcription factors that can increase the
activation of M1 cells [62]. Liu ef al. [63] found that
salidroside could suppress macrophage polarization. The
researchers established a gouty arthritis rat model to ob-
serve the effects of salidroside (80 mg/kg, i.g., 6 d) on
macrophage phenotypic switching. Salidroside could re-
program COX-2-, 5-LOX-, and CYP4A-mediated arachi-
donic acid metabolism through STAT1/NF-xB signaling.
Therefore, salidroside can attenuate the activation of THP-
1-cell-derived macrophages and decrease the release of in-
flammatory factors.

4. Effects of Salidroside on VSMCs

VSMCs are one of the main cell types in the blood ves-
sel wall. Increased VSMC proliferation can induce patho-
logical intimal thickening, which can induce the progres-
sion of atherosclerosis [64]. Some studies have shown that
VSMC:s switch from a contractile to synthetic phenotype,
and these cell possess highly proliferative and migratory
capacities, which may impair plaque stability [64,65]. In
addition, atherosclerotic plaque stability is negatively as-
sociated with increased VSMC apoptosis [66]. Whether
salidroside can inhibit the switching of VSMC:s is still un-
clear and needs further examination. The studies which
have focused on the beneficial effects of salidroside on in-
hibiting VSMC proliferation and apoptosis are as follows.

Zhuang and other researchers [67] investigated the
protective effect of salidroside (0.3 and 0.5 mM, 24 h)
on VSMCs under high glucose stimulation. The results
showed that salidroside could decrease the proliferation
of VSMCs not only by downregulating the activation of
NADPH and reducing the level of ROS but also by in-
hibiting mitochondrial fission through the downregulation
of dynamin-related protein (Drpl) and mitofusin 2 (Mfn2).
Moreover, salidroside (100 uM, 1 h) has been reported
to inhibit the proliferation of VSMCs by blocking the
AKT/glycogen synthase kinase 3 S (GSK3/5) signaling
pathway [68]. Hypoxia/reperfusion (H/R) can increase the
expression of inflammatory molecules and exacerbate ox-
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idative stress [69], which may lead to the cardiotoxic ef-
fects of VSMCs. Xu et al. [70] examined the viability,
caspase-3 activity and apoptosis rate of VSMCs to deter-
mine the potential mechanism by which salidroside (100,
200 or 400 uM, 30 min) antagonizes H/R-induced cell
apoptosis. The results confirmed that salidroside could re-
verse H/R-induced cell apoptosis by enhancing the activa-
tion of the SIRT1/FoxO3« pathway. Thus, salidroside can
suppress the proliferation of VSMCs by downregulating
Drpl, Mfn2 and oxidative stress, as well as by inhibiting
the AKT/GSK3p signaling pathway. In addition, salidro-
side can reduce VSMC apoptosis by enhancing the activa-
tion of the SIRT1/FoxO3« pathway.

5. Effects of Salidroside on Platelets

Platelet activation leads to adhesion, aggregation, and
thrombosis, playing a significant role in atherosclerosis
[71]. Recently, antiplatelet therapies, such as aspirin, clopi-
dogrel, and ticagrelor, have been shown to play a significant
role in reducing clinical atherothrombotic events among
high-risk patients [72]. Salidroside, which is a botanical
medicine, has also been demonstrated to produce beneficial
effects on inhibiting platelets.

Wei et al. [73] demonstrated that salidroside (5, 10 and
20 uM, 1 h) could inhibit thrombin- or C-reactive protein
(CRP)-induced human platelet aggregation, and this finding
was consistent with a study in mouse platelets. Moreover,
the researchers found that salidroside could not only atten-
uate platelet aggregation but also inhibit hemostasis and
arterial thrombus formation in vivo through AKT/GSK34
signaling. Although more research is needed to empiri-
cally determine the mechanism by which salidroside affects
platelets, these results provide new ideas for salidroside as
a novel antiplatelet therapy.

6. Effects of Salidroside on Lipid Metabolism

An aberrant lipid profile, including increased total
cholesterol (TC), triglyceride (TG), and LDL-C and de-
creased high-density lipoprotein cholesterol (HDL-C), is
associated with an increased risk of atherosclerosis [74].
Therefore, lipid lowering is regarded as the key treatment
in the primary and secondary prevention of atherosclero-
sis. Currently, statins, and proprotein convertase subtil-
isin/Kexin type 9 (PCSK9) inhibitors, and icosapent ethyl
(IPE), which are essential lipid-lowering therapies, play vi-
tal roles in controlling atherosclerosis [75]. The studies
which have shown that salidroside may also lower lipid lev-
els are as follows.

First, some animal studies have suggested that salidro-
side (100 mg-kg~!-day~—!, peros (p.o.), 8 weeks) could in-
duce abnormal lipid accumulation by stimulating the phos-
phorylation of AMPK in hepatocytes [76—78]. Second,
Zhang and colleagues [79] found that although salidro-
side (50 mg-kg~'-day~!, p.o., 8 weeks) could not de-
crease the weights of mice fed a high-fat diet (HFD), it
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could lower the levels of TC and TG and increase HDL-
C. Thus, the plaque area was significantly decreased in re-
sponse to salidroside. These results show that salidroside
can decrease atherosclerotic plaque formation by amelio-
rating lipid imbalances. In addition, Wen et al. [80] used
salidroside (8 mg/kg and 6 mg-kg—!-day !, intraperitoneal
injection, 16 weeks) to treat an apoE~/~ mouse model,
which developed atherosclerotic lesions similar to those
in humans. They reached the same conclusion. Third,
some researchers used HFD-fed mice and observed whether
salidroside could reduce serum lipids. The researchers an-
alyzed body weight, abdominal fat and serum levels of TC,
HDL-C, LDL-C, and TG. The results showed that salidro-
side (25 and 50 mg-kg—!-day~!, p.o., 8 weeks) could in-
hibit the serum levels of TC and LDL-C but had no signifi-
cant effects on TG or HDL-C [33]. These results suggested
that salidroside could not only significantly protect against
the increase in atherosclerotic plaques but also alleviate ab-
normal TC accumulation. Finally, salidroside (25 and 50
mg-kg~!-day~!, p.o., 12 weeks) significantly inhibited the
insulin-induced gene 1 (INSIG1)-sterol regulatory element-
binding protein (SREBP) pathway and could suppress the
gene expression of ATP citrate lyase to inhibit de novo lipo-
genesis and cholesterol biosynthesis [81]. In addition, as a
key transcriptional regulator of lipogenesis, SREBP-1 pro-
motes lipid accumulation [82]. Zhang et al. [83] demon-
strated that the miR-370 inhibitor could inhibit the expres-
sion of SREBP-1c by 36%. With a further study, they found
that salidroside plays an important role in the downregu-
lation of miR-370. This finding suggests that salidroside
(40, 80 and 160 mg-kg~'-day !, p.o., 4 weeks) may be a
potential target for the treatment of lipid metabolism. In
summary, salidroside may be a new therapeutic drug for
balancing the levels of serum lipids and alleviating the de-
velopment of plaque areas.

7. Effects of Salidroside on the Gut
Microbiota

Recent research has highlighted the significant role of
the gut microbiota in CVD [84], especially in atheroscle-
rosis. On the one hand, some studies have shown that
gut dysbiosis plays an important role in atherosclerosis
[85]. On the other hand, increasing intestinal permeabil-
ity and disruption of the intestinal barrier can lead to bacte-
rial translocation, which may release LPS, trimethylamine
(TMA) and trimethylamine-N-oxide (TMAO) into the cir-
culation. These gut microbiota-derived products can not
only induce systemic inflammation but are also connected
with atherosclerosis [86]. In other words, dysregulation of
the gut microbiota leads to low-grade chronic inflamma-
tion, which can accelerate atherosclerotic progression [87].
Zhu et al. [52] collected fecal samples from 218 individ-
uals with atherosclerotic cardiovascular disease (ASCVD)
and compared the composition of the gut microbiota with
the samples from healthy controls. They discovered that
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ASCVD patients had a higher level of Streptococcus and
Escherichia [88]. Moreover, scholars from Japan reported
that Lactobacillales was increased in CAD patients, while
Bacteroidetes was decreased [89]. In addition, changes in
the gut microbiota and gut permeability can increase IL-6,
TNF-« [90], dyslipidemia, and ectopic fat deposition [91].

Several studies have reported the protective effect of
salidroside on the gut microbiome. First, Xie and other
scholars [92] observed that salidroside (50 mg-kg—!-day !,
i.g., 12 weeks) could increase the levels of the proteins Zona
occludens 1 (ZO-1) and occludin, which could strengthen
the integrity and tight junctions of the intestine [93]. Thus,
salidroside can restore intestinal barrier integrity and in-
testinal permeability, which may reduce the accumulation
of microbial products in the periphery and reduce chronic
inflammation. Moreover, salidroside can regulate the gut
microbiota in mice, especially the levels of Lactobacillus
and Alloprevotella spp. Second, Li ef al. [94] analyzed
the composition of the gut microbiota in salidroside (20
mg-kg~!-day~!, i.g., 4 weeks) -treated and HFD-fed mice.
They observed that the relative levels of Lactobacillus and
Alloprevotella spp. in the intestinal tract were suppressed
by salidroside. Furthermore, Chen et al. [95] discovered
that salidroside (10, 20 and 40 uM, 2 h) could protect
against LPS-induced injury. They observed that salidroside
could suppress LPS-induced ROS production through the
PI3K/Akt/mTOR pathway. Salidroside has advantages in
preserving the intestinal barrier, but the underlying mecha-
nism still requires more research.

8. Conclusions and Future Perspectives

This review provides a modern scientific perspec-
tive to further understanding the molecular mechanism
of salidroside attenuating atherosclerosis and supply new
ideas for atherosclerosis management.

Based on the present studies, salidroside affects
atherosclerosis through multiple signaling pathways and re-
lated mechanisms. Salidroside protects against atheroscle-
rosis through multiple targets and multiple pathways. (1)
Salidroside ameliorates endothelial dysfunction through
anti-inflammatory effects, increasing the production of NO,
inhibiting EndMT, and regulating the death of ECs. (2)
Salidroside suppresses macrophage activation by inhibit-
ing the MAPK/NF-xB signaling pathway. In addition,
it can also reduce foam cell formation by activating the
Akt/MAPK pathway. Furthermore, macrophage polariza-
tion can be suppressed by salidroside via STAT1/NF-xB
signaling. (3) Salidroside suppresses the proliferation of
VSMCs by inhibiting the AKT/GSK3 /5 signaling pathway
or enhancing the activation of the SIRT1/FoxO3« pathway.
(4) Salidroside can ameliorate lipid imbalance. There may
be several underlying mechanisms. Salidroside decreases
the INSIGI-SREBP pathway and downregulates the ex-
pression of miR-370 to adjust lipid metabolism. (5) Salidro-
side can induce platelet aggregation by inhibiting thrombin

or CRP. In addition, salidroside can suppress thrombus for-
mation in vivo through AKT/GSK3/ signaling. (6) Salidro-
side can strengthen the intestinal barrier and improve in-
testinal permeability by increasing ZO-1 and occludin pro-
tein levels. Additionally, salidroside can regulate the gut
microbiota and reduce ROS via the PI3K/Akt/mTOR path-
way, which can improve the gut microenvironment.

In conclusion, these findings suggest that salidro-
side may be a promising drug for preventing and treating
atherosclerosis. At present, the anti-atherosclerotic signal-
ing pathways and targets of salidroside are not compre-
hensively understood, and few animal studies have been
conducted. Besides, its clinical application has progressed
slowly and some details remain unknown, and the best
optimum dose is not determined. Some studies were re-
stricted to a single model, and toxicity issues were not in-
cluded. Therefore, more studies, especially clinical trials,
are needed to further confirm the therapeutic effects and
molecular mechanisms of salidroside.
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