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Abstract

Background: Several studies have shown that women have a higher mortality rate than do men from ST-segment elevation myocardial
infarction (STEMI). The present study was aimed at developing a new risk-prediction model for all-cause in-hospital mortality in women
with STEMI, using predictors that can be obtained at the time of initial evaluation. Methods: We enrolled 8158 patients who were
admitted with STEMI to the Tianjin Chest Hospital and divided them into two groups according to hospital outcomes. The patient
data were randomly split into a training set (75%) and a testing set (25%), and the training set was preprocessed by adaptive synthetic
(ADASYN) sampling. Four commonly used machine-learning (ML) algorithms were selected for the development of models; the models
were optimized by 10-fold cross-validation and grid search. The performance of all-population-derived models and female-specific
models in predicting in-hospital mortality in women with STEMI was compared by several metrics, including accuracy, specificity,
sensitivity, G-mean, and area under the curve (AUC). Finally, the SHapley Additive exPlanations (SHAP) value was applied to explain
the models. Results: The performance of models was significantly improved by ADASYN. In the overall population, the support
vector machine (SVM) combined with ADASYN achieved the best performance. However, it performed poorly in women with STEMI.
Conversely, the proposed female-specific models performedwell in womenwith STEMI, and the best performingmodel achieved 72.25%
accuracy, 82.14% sensitivity, 71.69% specificity, 76.74% G-mean and 79.26% AUC. The accuracy and G-mean of the female-specific
model were greater than the all-population-derived model by 34.64% and 9.07%, respectively. Conclusions: A machine-learning-based
female-specific model can conveniently and effectively identify high-risk female STEMI patients who often suffer from an incorrect or
delayed management.
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1. Introduction

ST-elevationmyocardial infarction (STEMI), themost
serious type of cardiovascular disease, is one of the lead-
ing causes of mortality worldwide [1–3]. Multiple longi-
tudinal studies have shown that mortality from STEMI is
higher in women than in men [4–8]. Risk stratification is
critical in identifying high-risk patients and assisting physi-
cians in decision making [9,10]. The traditional risk as-
sessment tools are the Global Registry of Acute Coronary
Events (GRACE) [11] score and the Thrombolysis in My-
ocardial Infarction (TIMI) score [12,13], but the following
three conditions are usually taken as major limitations for
these tools: (1) the predictors are not immediately available
on admission, and medical history is unreliable; (2) these
tools were used without accounting for sex-specific disease
characteristics of STEMI, whereas growing evidence has
demonstrated sex differences in both symptom presenta-
tion and management efficacy STEMI patients [8,14]. The

symptoms of myocardial infarction (MI) in women patients
are atypical, which make women often suffer from an in-
correct or delayed management [15–19]; (3) These tools
were developed based on a traditional statistical method,
which may lead to the loss of important information [20–
23]. Recently, the GRACE 3.0 score, based on machine
learning (ML), was developed to reduce sex inequalities,
but it was specially designed for the risk assessment of non-
ST-elevation acute coronary syndromes (NSTE-ACS) [7].
Therefore, it is necessary to develop a new risk-prediction
model for women with STEMI using predictors that can be
obtained at the time of initial evaluation.

ML algorithms can capture nonlinear relationships
among clinical variables, and have many successful appli-
cations [24–28]. However, real-world medical data are of-
ten imbalanced. When trained with imbalanced data, the
developed ML models can be overwhelmed by the major-
ity class (i.e., survival group) and can ignore the minority
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class (i.e., death group) [29], which is the focus of clinical
attention. To alleviate this problem, an effective strategy is
data preprocessing. The data-preprocessing approach is to
resample the imbalanced training set prior to model train-
ing. In order to create the balanced training set, the origi-
nal imbalanced data set can be oversampled for the minor-
ity class and/or undersampled for the majority class [30].
Since the undersampling strategy leads to the loss of infor-
mation from the majority class, we adopted the adaptive
synthetic (ADASYN) oversampling approach [31], which
has been proven effective [32]. Due to the “black box” na-
ture of ML algorithms, the SHapley Additive exPlanations
(SHAP) value was employed to explain the predictors’ im-
pact on the outcome [33].

The aims of this study were to: (1) develop prediction
models for all-cause in-hospital mortality in women with
STEMI using four commonly used ML algorithms com-
bined with the ADASYN sampling approach, and (2) ex-
plain the prediction models with SHAP values.

2. Materials and Methods
2.1 Study Sample

The present study was conducted with information
from a hospital-based dataset as described previously [24].
In brief, a total of 8158 patients, from January 2015 to
December 2021, with STEMI, were retrospectively en-
rolled. This sample included 6084 (74.58%) males and
2074 (25.42%) females. The enrollment criteria for patients
are as follows: (1) the diagnosis of STEMI complied with
the European Society of Cardiology Guidelines for the di-
agnosis and treatment of acute ST-segment elevation my-
ocardial infarction [34]; (2) persistent ischemic chest pain
for less than 12 hours; (3) electrocardiogram (ECG) find-
ings showing the presence of ST segment elevation in two
or more consecutive leads, with ≥0.2 mV in the precordial
leads and ≥0.1 mV in the limb leads. The exclusion crite-
ria were as follows: (1) age <20 or >100; (2) incomplete
laboratory indexes; (3) missing data on sex; or (4) unknown
in-hospital outcome. This observational and retrospective
study was approved by the Local Ethics Committee. The
flowchart of this study is shown in Fig. 1.

2.2 Data Collection and Preprocessing
The basic clinical data of the patients were collected,

including demographic information (sex, age), physical
examination (heart rate, systolic blood pressure, diastolic
blood pressure, etc.), laboratory tests (cardiac troponin I),
admission pathway, and treatment. All the clinical vari-
ables could be obtained at the time of initial evaluation. The
primary endpoint was all-cause in-hospital mortality.

Variables with a missing-data percentage of less than
20% were retained. For continuous variables, the mean
imputation method was used to supply the missing val-
ues, which replaces the missing values of a certain variable
with the mean of the available cases. For categorical vari-

Fig. 1. Flowchart of the study. STEMI, ST-elevation myocardial
infarction; ADASYN, adaptive synthetic; DT, decision trees; RF,
random forests; SVM, support vector machines; XGBoost, ex-
treme gradient boosting; SHAP, SHapley Additive exPlanations.

ables, the mode imputation method was applied to supply
the missing values, which replaces the missing values of a
certain variable with the mode of the available cases. Res-
piration, heart rate, systolic blood pressure, diastolic blood
pressure, cardiac troponin I, and time from symptom to first
medical contact, were missing in 0.06%, 0.05%, 0.07%,
0.07%, 3.36% and 0.33% cases, respectively. Because the
range of different variables varied widely, and some of the
used algorithms required quantitative data normalization, z-
score normalization was used [35].

2.3 Statistical Analysis
Categorical variables are reported as counts (%) and

continuous variables as mean (SD) or median (IQR). The
Kolmogorov-Smirnov test was used to test the normality
of distribution. We used Student’s t test to assess the dif-
ferences between parametric continuous variables and the
Mann-Whitney-U test for non-parametric variables. We
used the Chi-squared test to evaluate the differences be-
tween categorical variables. All statistical analysis were
performed using Python 3.7.3 (Python Software Founda-
tion, Wilmington, Delaware, USA) with the scientific li-
braries “scipy.stats”. A two-tailed p≤ 0.05 was considered
statistically significant.
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2.4 Model Development and Validation

According to whether the endpoint occurred, the en-
tire set of data was divided into a survival group and a
death group. Each of the two groups was randomly split
into a sub-training set (75%) and a sub-testing set (25%),
and then the two sub-training sets were merged to get the
Training Set, and the two sub-testing sets were merged to
get the Testing Set as shown in Fig. 2. The Training Set
was pretreated using the ADASYN sampling technique to
achieve a balance between the minority class (death group)
and the majority class (survival group). Four commonly
used ML algorithms, including decision trees (DT), ran-
dom forests (RF), support vector machines (SVM), and ex-
treme gradient boosting (XGBoost), were selected for the
development of models to predict the in-hospital mortality
in patients with STEMI. A Grid Search method with 10-
fold cross validation was used to optimize the ML models.
The hyperparameter settings of each model were shown in
Table 1. Model performance was assessed according to sev-
eral learning metrics (accuracy, specificity, sensitivity, G-
mean, and area under the receiver operating characteristic
curve [AUC]). The performance of all-population-derived
models and female-specificmodels in predicting in-hospital
mortality in women with STEMI was compared to demon-
strate the effectiveness of the female-specific model pro-
posed in this study. In addition, a 5 × 2 cross validation
paired t test was used to evaluate the difference between
two models [36]. The model development and validation
were performed using Python (Version 3.7.3) software with
the packages “scikit-learn”, “xgboost”, and “imblearn”.

Fig. 2. Flowchart on splitting training and testing sets.

2.5 Model Interpretation

Although the ML models can provide more accurate
predictions than traditional statistical models, the results
cannot be explained. To show the decision-making process
in an intuitive way, the SHAP value was included. SHAP
is an approach based on game theory, proposed by Lund-
berg and Lee, to interpret ML models [33]. The optimal
SHAP value was calculated for each feature of each sam-
ple after the model was trained, and the impact of each fea-
ture on predictions can be represented by SHAP values [37].
Note: the SHAP value has a stronger theoretical basis than
other methods [38] and the performance of its explainabil-

ity has been validated in previous work [25,39,40]. The
ML model explanation was performed using Python (Ver-
sion 3.7.3) software with the package “shap”.

3. Results
3.1 Patient Characteristics

In all, 8158 STEMI patients were included in this
study, including 6084 male patients (74.58%) with a me-
dian age of 61.00 (53.00, 68.00) years, and 2074 female pa-
tients (25.42%) with a median age of 70.00 (63.00, 77.00)
years. The median age of all patients was 63.00 (55.00,
71.00) years. The overall in-hospital mortality rate was
3.02% (n = 246). Table 2 shows the baseline characteris-
tics and the comparisons between patients who died and
those who survived. Compared with surviving patients,
dead patients were more likely to have had higher rates of
emergency medical services (EMS) admissions, higher Kil-
lip classification, lower reperfusion rates, higher age, faster
respiration, higher heart rates (HR), lower systolic blood
pressure (SBP), lower diastolic blood pressure (DBP) and
higher cardiac troponin I (cTnI). Additionally, patients in
death group were more likely to have been unconscious.

3.2 Development of All-Population-Derived Models and
Validation in Women

The performance of different all-population-derived
models was shown in Table 3 and the analysis of receiver
operating characteristic (ROC) curves was shown in Fig. 3.
The performance of models was significantly improved by
ADASYN according to G-mean and AUC. The SVM com-
bined with ADASYN achieved the best performance (G-
mean: 80.33%; accuracy: 75.98%; sensitivity: 85.29%;
specificity: 75.66%; and AUC: 85.36%). As shown in
Fig. 4, 1492 of 1972 patients and 58 of 68 patients were cor-
rectly classified into the low-risk group and high-risk group,
respectively. However, the all-population-derived models
performed poorly in women with STEMI as shown in Ta-
ble 4. The best performing model achieved only 53.66%
accuracy, 51.48% specificity and 70.36% G-mean. Fig. 5
shows that 246 of 507 patients were incorrectly classified
into the high-risk group. Additionally, Fig. 6 shows that sex
(ranked as 4/12) was highly associated with the outcome,
and that women have a higher risk of all-cause mortality.

3.3 Sex Differences in Patients with STEMI
The comparison between men and women is shown

in Table 5. Compared with men, women were more likely
to have higher mortality, higher Killip classification, lower
reperfusion rates, higher age, lower DBP, and longer time
from symptom to first medical contact (S to FMC). The
baseline characteristics and the comparisons between the
survival group and the death group in female patients were
shown in Table 6. Compared with surviving patients, dead
patients had been more likely to have higher EMS admis-
sion rates, higher Killip classification, lower reperfusion
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Table 1. The hyperparameter settings of each model.
DT RF SVM XGBoost

‘criterion’ [‘entropy’, ‘gini’] [‘entropy’, ‘gini’] - -
‘max_depth’ range(1, 30) range(1, 30) - range(1, 30)
‘min_samples_split’ range(2, 30) range(2, 30) - -
‘min_samples_leaf’ range(1, 15) range(1, 15) - -
‘n_estimators’ - range(1, 300) - -
‘max_feature’ - range(2, 12) - -
‘kernel’ - - [‘linear’, ‘poly’, ‘sigmoid’, ‘rbf’] -
‘C’ - - np.linspace(0.01, 30, 50) -
‘gamma’ - - np.logspace(–10, 1, 50) np.logspace(–10, 1, 50)
‘coef0’ - - np.linspace(0, 5, 10) -
‘degree’ - - [1, 2, 3, 4] -
‘num_round’ - - - range(1, 300)
‘eta’ - - - np.linspace(0.01, 0.3, 100)
‘sub_sample’ - - - np.linspace(0.1, 1, 10)
‘colsample_bytree’ - - - np.linspace(0.1, 1, 10)
‘colsample_bylevel’ - - - np.linspace(0.1, 1, 10)
‘colsample_bynode’ - - - np.linspace(0.1, 1, 10)
‘lambda’ - - - [0, 1]
‘alpha’ - - - [0, 1]

DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine.

Table 2. Basic Characteristics of the overall sample by outcome.
Features Total Patients survived Patients died p-value

No. of patients 8158 7912 246
Male 6084 (74.58%) 5940 (75.08%) 144 (58.54%) <0.0001
Consciousness 8135 (99.72%) 7897 (99.81%) 238 (96.75%) <0.0001
Prehospital mode of transport <0.0001

EMS 1406 (17.23%) 1338 (16.91%) 68 (27.64%)
Transferred from other hospitals 1475 (18.08%) 1417 (17.91%) 58 (23.58%)
Self-transported 5277 (64.69%) 5157 (65.18%) 120 (48.78%)

Killip classification <0.0001
I 7608 (93.26%) 7740 (94.03%) 168 (68.29%)
II 405 (4.96%) 366 (4.63%) 39 (15.85%)
III 63 (0.77%) 58 (0.73%) 5 (2.03%)
IV 82 (1.01%) 48 (0.61%) 34 (13.82%)

Reperfusion type <0.0001
Primary PCI 6028 (73.89%) 5927 (74.91%) 101 (41.06%)
Thrombolysis 388 (4.76%) 369 (4.66%) 19 (7.72%)
Thrombolysis + Primary PCI 188 (2.30%) 186 (2.35%) 2 (0.81%)
Non 1554 (19.05%) 1430 (18.07%) 124 (50.41%)

Age, years 63.00 (55.00, 71.00) 63.00 (55.00, 71.00) 73.00 (64.00, 80.75) <0.0001
Respiration, counts/min 18.00 (17.00, 20.00) 18.00 (17.00, 20.00) 19.00 (17.00, 20.00) 0.0277
HR, beats/min 76.00 (65.00, 88.00) 76.00 (65.00, 88.00) 80.00 (69.00, 98.75) <0.0001
SBP, mm Hg 135.00 (119.00, 151.00) 135.00 (120.00, 151.00) 123.00 (100.25, 140.75) <0.0001
DBP, mm Hg 80.00 (70.00, 92.00) 81.00 (70.00, 92.25) 76.00 (64.00, 88.00) <0.0001
cTnI, ng/mL 1.40 (0.12, 3.66) 1.40 (0.12, 3.63) 1.84 (0.27, 4.44) 0.0012
S to FMC, min 118 (62.00, 291.00) 118.00 (62.00, 290.25) 114.00 (62.00, 348.00) 0.6074
EMS, Emergency medical services; PCI, percutaneous coronary intervention; HR, heart rate; SBP, systolic blood pressure; DBP,
diastolic blood pressure; cTnI, cardiac troponin I; S to FMC, time from symptom to first medical contact.
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Table 3. The performance of different all-population-derived models in the overall population.
Model Accuracy Specificity Sensitivity G-mean AUC

DT 94.90% 97.36% 23.53% 47.86% 60.39%
DT_ADASYN 65.05% 64.55% 79.41% 71.60% 77.48%
RF 94.95% 97.52% 20.59% 44.81% 59.63%
RF_ADASYN 74.85% 74.85% 75.00% 74.92% 78.86%
SVM 94.07% 96.75% 16.18% 39.56% 70.60%
SVM_ADASYN 75.98% 75.66% 85.29% 80.33% 85.36%
XGBoost 96.47% 99.19% 17.65% 41.84% 82.92%
XGBoost_ADASYN 73.97% 73.99% 73.53% 73.76% 82.33%
DT, decision tree; RF, random forest; SVM, support vector machine; XGBoost, extreme
gradient boosting; ADASYN, adaptive synthetic; AUC, area under the curve. G-mean is
the geometric mean of sensitivity and specificity.

Table 4. The performance of all-population-derived models in women with STEMI.
Model Accuracy Specificity Sensitivity G-mean AUC

DT 92.87% 96.65% 19.23% 43.11% 57.70%
DT_ADASYN 51.78% 50.49% 76.92% 62.32% 73.27%
RF 92.31% 96.25% 15.38% 38.48% 57.50%
RF_ADASYN 57.60% 56.02% 88.46% 70.39% 75.75%
SVM 92.87% 96.65% 19.23% 43.11% 70.59%
SVM_ADASYN 53.66% 51.48% 96.15% 70.36% 84.71%
XGBoost 95.12% 98.82% 23.08% 47.75% 79.70%
XGBoost_ADASYN 57.97% 56.41% 88.46% 70.64% 79.40%
DT, decision tree; RF, random forest; SVM, support vector machine; XGBoost, extreme
gradient boosting; ADASYN, adaptive synthetic; AUC, area under the curve. G-mean is
the geometric mean of sensitivity and specificity.

Fig. 3. ROC analysis results of all-population-derived models.
(A) ROC analysis results of models combined without ADASYN.
(B) ROC analysis results of models combined with ADASYN.
ROC, receiver operating characteristic; ADASYN, adaptive syn-
thetic; DT, decision trees; RF, random forests; SVM, support vec-
tor machines; XGBoost, extreme gradient boosting.

rates, higher age, lower SBP and higher cTnI.

3.4 Development, Validation and Comparison of
Female-Specific Models

The performance of different female-specific models
is shown in Table 7 and the analysis of ROC curves is
shown in Fig. 7. Similarly, the performance of models was
significantly improved by ADASYN. The SVM combined
with ADASYN achieved the best performance (G-mean:
76.74%; accuracy: 72.25%; sensitivity: 82.14%; speci-

Fig. 4. The confusion matrix of the best performing all-
population-derived model in the overall population.

ficity: 71.69%; and AUC: 79.26%), which significantly
outperformed the best performing all-population-derived
model in predicting in-hospital mortality in women with
STEMI. Compared with the all-population-derived model,
the accuracy and G-mean of the female-specific model in-
creased by 34.64% (p = 0.029) and 9.07% (p = 0.027), re-
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Table 5. Basic Characteristics of the overall patient population by sex.
Features Total Men Women p-value

No. of patients 8158 6084 2074
Consciousness 8135 (99.72%) 6069 (99.75%) 2066 (99.61%) 0.4280
Death 246 (3.02%) 144 (2.37%) 102 (4.92%) <0.0001
Prehospital mode of transport 0.3390

EMS 1406 (17.23%) 1050 (17.26%) 356 (17.16%)
Transferred from other hospitals 1475 (18.08%) 1078 (17.72%) 397 (19.14%)
Self-transported 5277 (64.69%) 3956 (65.02%) 1321 (63.69%)

Killip classification 0.0056
I 7608 (93.26%) 5708 (93.82%) 1900 (91.61%)
II 405 (4.96%) 277 (4.55%) 128 (6.17%)
III 63 (0.77%) 41 (0.67%) 22 (1.06%)
IV 82 (1.01%) 58 (0.95%) 24 (1.16%)

Reperfusion type <0.0001
Primary PCI 6028 (73.89%) 4581 (75.30%) 1447 (69.77%)
Thrombolysis 388 (4.76%) 304 (4.99%) 84 (4.05%)
Thrombolysis + Primary PCI 188 (2.30%) 158 (2.60%) 30 (1.45%)
Non 1554 (19.05%) 1041 (17.11%) 513 (24.73%)

Age, years 63.00 (55.00, 71.00) 61.00 (53.00, 68.00) 70.00 (63.00, 77.00) <0.0001
Respiration, counts/min 18.00 (17.00, 20.00) 18.00 (17.00, 20.00) 18.00 (17.00, 20.00) 0.2218
HR, beats/min 76.00 (65.00, 88.00) 76.00 (65.00, 88.00) 75.00 (64.00, 88.00) 0.0742
SBP, mm Hg 135.00 (119.00, 151.00) 134.00 (120.00, 150.00) 135.00 (119.00, 153.00) 0.3254
DBP, mm Hg 80.00 (70.00, 92.00) 82.00 (71.00, 94.00) 79.00 (70.00, 90.00) <0.0001
cTnI, ng/mL 1.40 (0.12, 3.66) 1.40 (0.10, 3.69) 1.40 (0.20, 3.58) 0.0870
S to FMC, min 118 (62.00, 291.00) 116.00 (61.00, 281.00) 121.00 (68.00, 327.75) 0.0006
EMS, Emergency medical services; PCI, percutaneous coronary intervention; HR, heart rate; SBP, systolic blood pressures; DBP,
diastolic blood pressure; cTnI, cardiac troponin I; S to FMC, time from symptom to first medical contact.

Table 6. Basic Characteristics of female patients by outcome.
Features Total Patients survived Patients died p-value
No. of patients 2074 1972 102
Consciousness 2066 (99.61%) 1966 (99.70%) 100 (98.04%) 0.0699
Prehospital mode of transport <0.0001

EMS 356 (17.16%) 328 (16.63%) 28 (27.45%)
Transferred from other hospitals 397 (19.14%) 370 (18.76%) 27 (26.47%)
Self-transported 1321 (63.69%) 1274 (64.60%) 47 (46.08%)

Killip classification <0.0001
I 1900 (91.61%) 1828 (92.70%) 72 (70.59%)
II 128 (6.17%) 110 (5.58%) 18 (17.65%)
III 22 (1.06%) 21 (1.06%) 1 (0.98%)
IV 24 (1.16%) 13 (0.66%) 11 (10.78%)

Reperfusion type <0.0001
Primary PCI 1447 (69.77%) 1406 (71.30%) 41 (40.20%)
Thrombolysis 84 (4.05%) 72 (3.65%) 12 (11.76%)
Thrombolysis + Primary PCI 30 (1.45%) 30 (1.52%) 0 (0.00%)
Non 513 (24.73%) 464 (23.53%) 49 (48.04%)

Age, years 70.00 (63.00, 77.00) 70.00 (63.00, 77.00) 77.00 (70.25, 83.00) <0.0001
Respiration, counts/min 18.00 (17.00, 20.00) 18.00 (17.00, 20.00) 19.00 (18.00, 20.00) 0.0545
HR, beats/min 75.00 (64.00, 88.00) 75.00 (64.00, 88.00) 78.00 (65.25, 94.75) 0.0693
SBP, mm Hg 135.00 (119.00, 153.00) 135.00 (119.00, 153.00) 126.50 (101.00, 149.75) <0.001
DBP, mm Hg 79.00 (70.00, 90.00) 79.00 (70.00, 90.00) 77.00 (65.25, 86.00) 0.0936
cTnI, ng/mL 1.40 (0.20, 3.58) 1.40 (0.18, 3.54) 2.02 (0.62, 4.79) 0.0077
S to FMC, min 121.00 (68.00, 327.75) 121.00 (67.00, 325.00) 125.50 (79.25, 394.75) 0.3927
EMS, Emergency medical services; PCI, percutaneous coronary intervention; HR, heart rate; SBP, systolic blood pressures; DBP,
diastolic blood pressure; cTnI, cardiac troponin I; S to FMC, time from symptom to first medical contact.
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Table 7. The performance of different female-specific models.
Model Accuracy Specificity Sensitivity G-mean AUC

DT 90.17% 93.89% 25.00% 48.45% 58.99%
DT_ADASYN 73.22% 73.32% 71.43% 72.37% 75.64%
RF 95.18% 100.00% 10.71% 32.73% 66.53%
RF_ADASYN 72.45% 72.30% 75.00% 73.64% 82.62%
SVM 93.06% 96.54% 32.14% 55.70% 56.71%
SVM_ADASYN 72.25% 71.69% 82.14% 76.74% 79.26%
XGBoost 94.99% 99.39% 17.86% 42.13% 70.05%
XGBoost_ADASYN 81.89% 82.89% 64.29% 73.00% 80.51%
DT, decision tree; RF, random forest; SVM, support vector machine; XGBoost, extreme
gradient boosting; ADASYN, adaptive synthetic; AUC, area under the curve. G-mean is
the geometric mean of sensitivity and specificity.

Fig. 5. The confusion matrix of the best performing all-
population-derived model in women with STEMI. STEMI, ST-
elevation myocardial infarction.

spectively. The confusion matrix of the best performing
female-specific model is shown in Fig. 8. Patients were cor-
rectly classified into the low-risk group (n = 354) and high-
risk group (n = 23). The SHAP values are shown in Fig. 9.
To further show the explainability of the model, two typical
examples were provided as shown in Fig. 10: a 74-year-
old woman who survived, and an 84-year-old woman who
died. The arrows show the effect of each factor on the pre-
diction. Specifically, the red arrows and blue arrows indi-
cate that the factors increased and reduced the risk of death,
respectively. The final SHAP value was provided by the
combined influence of all factors and corresponded to the
prediction score of the model. For the survivor, there was a
low SHAP value (–0.2659) and prediction score (0.2210);
for the non-survivor, there was a high SHAP value (0.7341)
and prediction score (0.9825).

4. Discussion

STEMI is the leading cause of death among women
worldwide [1–8], which may be partly attributed to atypi-
cal symptoms and insufficient risk assessment. Therefore,
in the present study, four commonly used ML algorithms
were selected for the development of models to predict the
in-hospital mortality in women with STEMI. Additionally,
ADASYNwas applied in order to improve the performance
of the models [31]. The best performing female-specific
model achieved an accuracy, sensitivity, specificity, G-
mean, and AUC of 72.25%, 82.14%, 71.69%, 76.74% and
79.26%, respectively, leading to a more convenient and ef-
fective identification of high-risk patients at the first medi-
cal contact.

Consistent with previous studies [4,41], our results
demonstrated that women were more likely than men to
have a delay between symptom and medical contact (121
min vs. 116 min, p = 0.0006), lower rates of reperfusion
treatment (75.27% vs. 82.89%, p < 0.0001), and higher
mortality (4.92% vs. 2.37%, p< 0.0001). The mechanisms
behind these differences may be the following: (1) women
with STEMI are more likely to present with multiple non-
chest pain symptoms [19,42,43], which often results in an
incorrect or delayed management; (2) competing responsi-
bilities, as well as embarrassment or fear of disturbing oth-
ers, lead women to be more likely to wait until symptoms
subside rather than seek care [44]; and (3) because of lower
socioeconomic status and lower perception for the risk of
heart disease, women are less willing to opt for invasive
coronary angiography [45–47]. As a result, physicians, pa-
tients, and relatives all tend to choose conservative treat-
ments due to the lack of sex-specific guidelines [48]. There-
fore, it is critical to optimize risk assessment and subsequent
management, although the traditional risk-assessment tools
are far from perfect. As machine learning blossoms, there
are many successful applications of machine-learning mod-
els in the cardiovascular field. A machine-learning-based
model called the PRAISE score was developed for predict-
ing all-cause death, recurrent acute myocardial infarction,
and major bleeding after acute coronary syndrome [49], but
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Fig. 6. SHAP values formortality risk provided by the best performing all-population-derivedmodel. SBP, systolic blood pressure;
cTnI, cardiac troponin I; DBP, diastolic blood pressure; SHAP, SHapley Additive exPlanations.

Fig. 7. ROC analysis results of female-specific models. (A)
ROC analysis results of models combined without ADASYN. (B)
ROC analysis results of models combined with ADASYN. ROC,
receiver operating characteristic; ADASYN, adaptive synthetic;
DT, decision trees; RF, random forests; SVM, support vector ma-
chines; XGBoost, extreme gradient boosting.

it was not designed for women. Recently, the GRACE 3.0
score, based on machine learning, was developed to reduce
sex inequalities, but it was specifically developed for risk
assessment of NSTE-ACS [7].

Although ML algorithms are accurate in capturing
complex nonlinear relationships between clinical variables,
when trained with imbalanced real-world medical data, the
developed models are vulnerable to incorrectly predicting
the minority class as the majority class [50], which leads
the models to ignore high-risk patients. Therefore, an over-
sampling technology called ADASYN was applied to gen-
erate more samples from the minority class to alleviate the
above problem. Compared with undersampling technol-
ogy, which balances the Training Set by discarding the ma-
jority class samples, ADASYN can fully utilize precious
medical data, resulting in a higher level of robustness [31].
Due to the “black-box” nature of ML models, the SHAP

Fig. 8. The confusion matrix of the best performing female-
specific model in women with STEMI. STEMI, ST-elevation
myocardial infarction.

value was applied for explanation. The SHAP assesses the
effect of each feature on results and presents it in an intuitive
way [33], which can help doctors better understand how the
model works, rather than blindly trusting the predictions.

The present study demonstrated that the female-
specific models significantly outperformed the all-
population-derived models in predicting in-hospital
mortality in women with STEMI, and sex was considered
to be an important predictor according to the feature
importance scores (Fig. 4). However, women were not
well represented in the study sample of the TIMI trial,
where they accounted for only 24.7% [12], and in the
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Fig. 9. SHAP values for mortality risk provided by the best performing female-specific model. SBP, systolic blood pressure; cTnI,
cardiac troponin I; DBP, diastolic blood pressure; SHAP, SHapley Additive exPlanations.

Fig. 10. The interpretation of model prediction results with the two samples. (A) Survivor. (B) Non-survivor. SBP, systolic blood
pressure; cTnI, cardiac troponin I; DBP, diastolic blood pressure.

study sample of the GRACE trial, where they accounted
for 33.5% [11]. Additionally, our models can provide
predictive results at the initial evaluation, resulting in an
improvement in applicability. The 2017 ESC Guidelines
recommend an aggressive treatment strategy for high-risk
patients [34]. However, physicians, and women with
STEMI, are more likely to choose conservative treatment
(treatment-risk paradox), which can be inappropriate [51].
The proposed female-specific models can conveniently
and effectively identify high-risk patients at the first
medical contact, which can provide a basis for physicians
to choose intensive treatment for high-risk patients, thereby
improving treatment compliance.

This study has several limitations to be acknowledged.
First, this is a single-center study. Therefore, the models
should be validated in external centers to confirm their gen-
eralizability. Nonetheless, the risk prediction model pro-
posed in this study still provides a convenient and effec-
tive method to predict in-hospital mortality in women with

STEMI. Second, this is a retrospective study. Bias in pa-
tient enrollment and data collection is inevitable. How-
ever, the patients’ data were collected from a high-quality
database, which reflected the real world. Third, the end-
point of this study included only in-hospital mortality, with
no information on myocardial infarction, ischemic stroke,
or heart failure; information on longitudinal follow-up was
not obtained. Thus, further long-term follow-up studies are
needed to obtainmore detailed and comprehensive informa-
tion in order to develop more clinically instructive models.
Finally, some important predictors were not included in this
study, such as creatinine level, myocardial injury biomark-
ers, and sex-specific risk factors, which attenuated the per-
formance of models and made the comparison to other risk
scores impossible. Conversely, our models can be used
conveniently and effectively in pre-hospital or emergency
departments. In addition, the symptoms of MI are usually
atypical in elderly patients and in patients with diabetes,
which makes these patients less willing to seek medical ser-
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vice. Therefore there are many papers and literature works
that focus on diabetes and the elderly as distinct groups [52–
55]. Accordingly, future studies should focus on applying
machine learning to improve the prognosis of these patients.

5. Conclusions
In this study, four commonly used ML models (DT,

RF, and SVM) were developed to predict in-hospital mor-
tality in women with STEMI. The predictors could be ob-
tained at initial evaluation. Additionally, ADASYN was
applied to assess andmitigate the effects of class imbalance,
thereby improving model performance. By capturing the
non-linear association of predictors, the proposed female-
specific model could conveniently and effectively identify
high-risk female patients at the first medical contact. There-
fore, the integration of our female-specific model into daily
clinical practice may improve the prognosis of women with
STEMI who often suffer from an incorrect or delayed diag-
nosis.
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