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Abstract

Background: Although machine learning (ML)-based prediction of coronary artery disease (CAD) has gained increasing attention,
assessment of the severity of suspected CAD in symptomatic patients remains challenging. Methods: The training set for this study
consisted of 284 retrospective participants, while the test set included 116 prospectively enrolled participants from whom we collected
53 baseline variables and coronary angiography results. The data was pre-processed with outlier processing and One-Hot coding. In the
first stage, we constructed a ML model that used baseline information to predict the presence of CAD with a dichotomous model. In
the second stage, baseline information was used to construct ML regression models for predicting the severity of CAD. The non-CAD
population was included, and two different scores were used as output variables. Finally, statistical analysis and SHAP plot visualization
methods were employed to explore the relationship between baseline information and CAD. Results: The study included 269 CAD
patients and 131 healthy controls. The eXtremeGradient Boosting (XGBoost) model exhibited the best performance amongst the different
models for predicting CAD, with an area under the receiver operating characteristic curve of 0.728 (95% CI 0.623–0.824). The main
correlates were left ventricular ejection fraction, homocysteine, and hemoglobin (p < 0.001). The XGBoost model performed best for
predicting the SYNTAX score, with the main correlates being brain natriuretic peptide (BNP), left ventricular ejection fraction, and
glycated hemoglobin (p < 0.001). The main relevant features in the model predictive for the GENSINI score were BNP, high density
lipoprotein, and homocysteine (p < 0.001). Conclusions: This data-driven approach provides a foundation for the risk stratification
and severity assessment of CAD. Clinical Trial Registration: The study was registered in www.clinicaltrials.gov protocol registration
system (number NCT05018715).
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1. Introduction
Artificial intelligence is an important tool in the cur-

rent era of big data and can improve human productivity by
simulating human learning thought processes and analyzing
complex data [1]. Currently, machine learning (ML) and a
subset of ML, deep learning, are the most commonmethods
used in artificial intelligence [2]. The inception of machine
learning (ML) can be traced back to the 1950s and 1960s
[2], when scholars commenced investigating the plausi-
bility of employing computers for self-regulating learning
and discerning decision-making, accomplished through the
construction of mathematical models and algorithms [3].
This approach empowers computers to continually enhance
and optimize their functioning by processing and learning
from data [4]. ML deviates from traditional rule-based pro-
gramming by placing a greater emphasis on automatic pat-
tern recognition in data, thereby precluding the need for
manual rule design. Deep learning is commonly used to an-
alyze raw clinical data and imaging data [4], while ML can
be used to predict the severity and prognosis of cardiovas-

cular disease [5]. Artificial intelligence is now commonly
used in medicine and has been advancing progressively in
the cardiovascular field [6].

The diagnosis of coronary artery disease (CAD) and
early intervention in symptomatic patients with suspected
CAD is challenging [7], and its definitive diagnosis in clin-
ical practice remains complicated [8]. Although current
methods reduce the probability of misdiagnosis of stable
CAD, the invasive diagnostic procedures used can be con-
sidered an overly medical approach. Therefore, the devel-
opment of a scoring system that accurately predicts coro-
nary artery stenosis in patients suspected of CAD and its
severity could reduce the number of downstream and in-
vasive diagnostic tests [9]. Thus far, investigators have
proposed multiple testing strategies to effectively screen
patients with suspected CAD, the most notable being the
Diamond Forrest model. However, research suggests this
model has a high false positive rate. As a result, a “battle
of the scores” has ensued over the past decade for predict-
ing the pretest probability of coronary heart disease. Many
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“up-to-date” risk assessment models have emerging based
on the latest clinical trial data. However, these methods
still cannot accurately assess the complications of CAD and
hence their application in clinical practice remains limited
[8].

The GENSINI score reflects plaque loading, but not
bifurcation, calcification and tortuous lesion characteristics.
The SYNTAX score on the other hand reflects the type of
plaque and the complexity of percutaneous coronary inter-
vention (PCI). It also describes the anatomy of the coronary
lesion and provides guidance to clinicians when developing
optimal treatment plans for high-risk patients. The SYN-
TAX score can help withmaking treatment decisions for pa-
tients with lesions suitable for both PCI and coronary artery
bypass graft (CABG) and in whom the surgical mortality
rate is expected to be low.

The goal of this study was therefore to develop a ML
model based on the clinical characteristics of a retrospec-
tive cohort comprising CAD patients and healthy controls.
The model was then tested in a prospective cohort. The
objectives of the study were first to use ML and statistical
methods to identify new risk factors associated with disease
severity in CAD, and second to develop an electronic med-
ical record- and coronary score-driven ML model that was
predictive for the detection of severe CAD.

2. Materials and Methods
2.1 Methods

A three-step modeling procedure was used to achieve
the research goals [10]. In the first, patients were divided
into two groups based on coronary angiographic findings:
a coronary group (stenosis ≥50) and a non-coronary group
(stenosis <50%, or no stenosis) [11,12]. The second step
was to provide estimates of the SYNTAX and GENSINI
scores for patients undergoing coronary angiography [13].
In the third step, 53 clinical characteristics were used as in-
put to predict diagnosis (For example, sex, age, BMI, etc.),
the GENSINI and SYNTAX scores (Table 1) [14]. Fea-
ture selection deep learning techniques were also used and
these provide a way to identify potential risk factors for
CAD based on ML. This allows a better understanding of
the medical and clinical features associated with the pres-
ence or absence of CAD, with the outcome derived from the
SYNTAX score distribution, and with the outcome derived
from the GENSINI score. The methodology to be evalu-
ated is designed to provide a uniform risk score that can
help to determine the need for invasive or functional non-
invasive tests in patients with suspected CAD, as well as
for patients with complex CAD who need more rigorous
coronary revascularization surgery. The development of an
automated recommendation system based on data-driven,
perspective analysis ML algorithms should thus provide an
auxiliary means for personalized treatment in routine clini-
cal practice.

Unlike previous studies [8], the present investigation
included a population with <50% coronary stenosis for re-
gression analysis. There were two reasons for this. First,
a significant proportion of patients in our study cohort had
coronary stenosis in the 0–50% range, but exhibited clear
symptoms of CAD. Recent research on this population sug-
gests that disease progressionwithout early intervention can
have serious consequences. These patients were therefore
included with the aim of guiding physicians in the develop-
ment of protocols for early coronary prevention. Second,
this population was also an accurate representation of the
real-world population, thus making it easier to reproduce in
future work. SYNTAX scores were obtained using online
evaluation on the website (http://www.syntaxscore.org/).
The GENSINI score is based on coronary angiographic
findings and was calculated by multiplying the stenosis
score at the site of the lesion by the appropriate weight-
ing factor. The sum of all the lesion branch scores is the
GENSINI score [15].

This study included patients who underwent elective
or urgent coronary angiography at the First Affiliated Hos-
pital of Xinjiang Medical University. We attempted to de-
velop new risk prediction algorithms for CAD-related risk
factors and for CAD severity using clinical indicators in
combination with coronary angiographic features and with
two different scoring criteria.

2.2 Participants
The training set consisted of data from 284 retrospec-

tive participants, while the test set was comprised of 116
prospectively enrolled participants [16]. Patients were eli-
gible for the test set only if they were judged to have stable
angina. The exclusion criteria were a previous diagnosis of
CA, previous diagnosis of acute coronary syndrome (ACS),
previous history of PCI or CABG, severe infection, or renal
or pulmonary comorbidities [17].

2.3 Model Building Process
A three-step approach was used for building the

model: database creation, model construction, and model
interpretation and evaluation.The detailed technical path is
shown in Fig. 1.

2.3.1 Database Creation
In the first step, each patient’s medical data was col-

lected from electronic medical records. The SYNTAX and
GENSINI scores for each patient were independently as-
sessed by two cardiologists. Disagreements in the coro-
nary evaluation were assessed by a third specialist who then
made the final decision.

All of the original data were summarized and stored,
and then carefully checked to ensure they met the quality
standards for the tasks performed [18]. To this end, descrip-
tive statistical methods and visualization techniques were
used to summarize patient characteristics for assessment by

2

http://www.syntaxscore.org/
https://www.imrpress.com


Fig. 1. The research process is depicted in the diagram where the raw data is initially subjected to pre-processing and fed into
distinct regression and classification algorithms. Following the model training and hyperparameter tuning, the ultimate prediction
outcomes are generated, and the SHAP framework is employed for model interpretation.

the cardiologists and to identify features that aremeaningful
for the construction of ML models [19].

2.3.2 Data Processing and Feature Selection
The original dataset contained 53 feature attributes.

These were initially processed using the Pandas package
in Python to convert the raw data into Int and Float types
that could be used for ML operations [20]. The Filter and
Embedded methods were applied for analysis of the clin-
ical features [21]. The Filter method primarily employs
techniques such as the chi-square test and correlation co-
efficient, whereas the Embedded method integrates feature
selection into ML algorithms to identify the most relevant
features through the learning process. Notably, the extreme
gradient boosting (XGBoost) and random forest (RF) al-
gorithms are the most relevant approaches in this context
[22,23]. The XGBoost algorithm is well-suited for the pro-
cessing of clinical data [22,24], while the RF algorithm has
the advantages of high accuracy in feature selection, avoid-
ance of overfitting, and broad applicability [23]. In view of
the dimensionality and feature relevance of the dataset, we
chose to use the XGBoost regressor and RF regressor func-
tion packages to filter the clinical features [25]. Ultimately,
the algorithm that considers the area under the receiver op-
erating characteristic (ROC) curve to be the largest is the
best algorithm for constructing the dataset by comparing the
ML feature filtering performance [26].

2.3.3 Model Building
The building phase for our experimental model con-

sisted of two steps. In the first, the binary classification

problem is addressed, with the model built after labeling pa-
tients as either “diseased” or “disease-free” based on their
coronary angiography results [11,27].

During the model training process, regularization
techniques and weight adjustment of samples were em-
ployed to enhance the model prediction ability, given the
limited sample size and the unbalanced categories in the
dataset. Furthermore, a 5-fold cross-validation was used
for model selection (Supplementary Fig. 1) [28], as well
as hyperparameter adjustment to prevent overfitting and to
improve model generalization. Specifically, L1 and L2 reg-
ularization techniques were used to select important fea-
tures, to reduce the weighting of unimportant features, and
to avoid overfitting. Sample-based weight adjustment was
also used to balance the dataset by assigning higher weights
to minority categories of samples [29]. This drives the
model to assign higher weights to minority categories dur-
ing training [30]. Sample weights were determined by cal-
culating the ratio of the weights of positive samples (rep-
resenting the minority categories) to the weights of nega-
tive samples (representing the majority categories). More
specifically, this ratio was calculated as the number of sam-
ples in the majority category divided by the number of sam-
ples in the minority category. Furthermore, 5-fold cross-
validation was used for model selection and for hyperpa-
rameter adjustment to prevent overfitting and to improve
the ability for model generalization. The model parameters
are shown in Supplementary Table 1.
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Table 1. Machine learning model input and output characteristics.

Feature type In put features
Binary classification
algorithm

Out put Regression algorithms Out put

General information Age, gender, education, nation, diastolic blood pressure, systolic
blood pressure, body mass index, drinking history, smoking his-
tory, pulse rate

1.         SVM
2.         XGB
3.         RF
4.         NB
5.         LR
6.         GBC
7.         Adaboots

Predicting subjects with
or without coronary
artery disease

1.         XGB
2.         Decision Tree
3.         linear
4.         SVM
5.         K-Neighbors
6.         RF
7.         Ada-boost
8.         Bagging
9.         Extra-Tree

Predicting subjects’ SYNTAX
score & Predicting subjects’
GENSINI score

Medical history Symptom, previous history (hypertension, type 2 diabetes, hy-
perlipidemia, coronary heart disease, chronic renal failure), fam-
ily history (hypertension, type 2 diabetes, hyperlipidemia, coro-
nary heart disease, chronic renal failure), Medication History (an-
tiplatelet drugs, statins, angiotensin receptor blockers, angiotensin
converting enzyme inhibitor drugs, calcium channel blocker, beta
blocker, diuretics, nitrates, glucose-lowering drugs), history of
drug allergy, surgical history

Laboratory examination Troponin I, creatine-phosphokinase, isoenzymes Myoglobin,
brain natriuretic peptide, Leukocytes, Hemoglobin, K+, Na+,
Cl−, Blood glucose, Triglycerides, Total cholesterol, high den-
sity lipoprotein, low density lipoprotein, C-reactive protein, in-
terleukin 6, Calcitoninogen, D dimer, Homocysteine, Glycated
hemoglobin

Imaging examination Ventricular wall motion abnormalities, ejection fraction%
SVM, Support Vector Machine; XGB, eXtreme Gradient Boosting; RF, Random Forest; NB, Naive Bayes; LR, Logistic Regression; GBC, Gradient Boosting Classifier; Adaboots, Adaptive Boosting; K-
Neighbors, K-Nearest Neighbors Regression.
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Following the completion of training on the training
dataset, the model was tested on the test dataset to validate
the performance metrics [30]. The second step in the model
building involved a regression analysis and was modeled
based on the SYNTAX and GENSINI scores. From the
large number of candidate models available for modeling
classification and regression, a total of 7 dichotomous clas-
sification models and 9 regression models were selected
[31]. The input and output for these models are described
in detail in Table 1.

2.3.4 Model Interpretation and Evaluation
To address the challenge of limited model inter-

pretability, the SHAP framework was incorporated to pro-
vide an explanation of themodel outcomes, thereby increas-
ing confidence in the results. The SHAP value quantifies
the extent to which each feature in the model contributes to
the prediction. It also facilitates with visualization of the
results.

For the evaluation of performance, various metrics
have been employed to evaluate the efficacy of ML models
in both classification and regression tasks. For dichotomous
models, a range of evaluationmetrics were employed across
five dimensions, including area under the ROC curve, R-
squared, accuracy, precision, recall, and F1-score [32].
Performance evaluation was carried out by calculating the
mean squared error, mean absolute error (MAE), mean ab-
solute prediction error, and coefficient of determination
(R2) [33], as detailed below.

Accuracy =
TP + TN

N

Precision =
TP

TP + FP

Recall =
TP

TP + FN
F1−Scorei =

2× Precision× Recall
Precision+ Recall

F1_Score = ni

A

n∑
i=1

F1_Scorei

R2 = 1−
∑

i (ŷi − yi)
2∑

i (ȳ − yi)
2

MAE =
1

N

∑N

i=1
|yi − ŷl|

MSE =
1

N

∑N

i=1
(yi − ŷl)

2

Where N denotes the total number of samples tested, TP
(True Positive) denotes a true case, TN (True Negative) de-
notes a true negative case, FP (False Positive) denotes a
false positive case, and FN (False Negative) denotes a false
negative case. y_i denotes the true value of the i-th sample,
(y_i ) ̂ denotes the predicted value of the i-th sample, and
y¯ denotes the mean of the true values of all samples.

The ML framework proposed in this study was im-
plemented in the python programming language. Differ-
ences were considered statistically significant when two-
sided tests showed a p-value < 0.05. p-values were cor-
rected for multiple testing using the Benjamini-Hochberg
procedure [34]. All tests were two-tailed (non-directional),
i.e., the alternative hypothesis was that the indicators being
measured were not equal.

3. Results
3.1 Predictive Factors

Patients with well-established CAD risk factors, such
as hypertension, type-2 diabetes, smoking and alcohol con-
sumption, were generally found to have higher coronary
vascular score values than those without (Table 2). Indeed,
non-parametric Mann‒Whitney tests showed that hyperten-
sion (p = 0.002, p = 0.002), type-2 diabetes (p < 0.001, p
< 0.001), and smoking (p = 0.028, p = 0.007) had statis-
tically significant effects on the distribution of SYNTAX
scores, and GENSINI scores. Alcohol consumption had no
significant effect on the distribution of the two scores (p
= 0.307, p = 0.160), but a significant effect on diagnosis
(p = 0.003). For the persistent risk factors (Table 3), non-
parametric Spearman’s rho test showed significant positive
correlations between age, troponin, creatine-phosphokinase
(CPK), myoglobin (MB), brain natriuretic peptide (BNP),
glucose (Glu), interleukin 6, D-dimer, homocysteine (Hcy)
and glycosylated hemoglobin (GHb) levels, and diagnosis,
SYNTAX score, and GENSINI score (r >0, p < 0.05). to-
tal cholesterol (TC), high- density lipoprotein (HDL), low-
density lipoprotein (LDL), ejection fraction (EF%) values
and SYNTAX score response negative correlation (r <0, p
< 0.05).

3.2 Visualization Analysis
After screening for key features that affect diagnos-

tic and regression models, SHAP visualization analysis was
performed in two separate parts. Fig. 2 summarizes the risk
factors that had a significant impact on diagnosis and on
the SYNTAX and GENSINI scores. Left ventricular ejec-
tion fraction, homocysteine, hemoglobin, HDL, and BNP
each had a significant effect in the diagnostic model. BNP,
EF%, MB, GHb, and TC were important features in the re-
gression models for accurate prediction by the SYNTAX
score, while BNP, HDL, GHb, glucose, and age were im-
portant for accurate prediction by the GENSINI score.

Ninemetrics outside of the statistical analysis of SYN-
TAX score correlations were identified in the deep learning
algorithm based on SYNTAX scores (Fig. 3). These fac-
tors were not identified by assessing the Spearman corre-
lation coefficients. In fact, statistical evaluation of rigor-
ous SYNTAX scores found that K+ had a significant pos-
itive correlation (p = 0.025, r = 0.611). Education had a
significant negative correlation (p = 0.026, r = –0.111) but
the r value was close to 0, indicating only a weak corre-
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Fig. 2. Results of screening clinical features using machine learning algorithms. (a) Distribution of Shapley values for the screened
clinical features of the best performing diagnostic model. (b) Distribution of Shapley values for the screened clinical features of the best-
performing model based on SYNTAX score. (c) Distribution of Shapley values for the screened clinical features of the best-performing
model based on the GENSINI score. EF%, ejection fraction; Hcy, homocysteine; Hb, hemoglobin; HDL, high density lipoprotein; BNP,
brain natriuretic peptide; Glu, glucose; TC, total cholesterol; GHb, glycosylated hemoglobin; MB, myoglobin; CK, creatine Kinase; TG,
triglyceride; LDL, low-density lipoprotein; IL6, interleukin 6; WBC, white blood cell; β-blocker, Beta blockers; CRP, C reactive protein;
Leu, leucocyte; SBP, systolic blood pressure; DBP, diastolic blood pressure.

lation. In the deep learning algorithm based on GENSINI
scores, 10 indicators were identified outside of the analysis
of GENSINI score correlations. None of these factors was
found to be significant by assessing Spearman’s correlation
coefficient. Indeed, statistical evaluation of the GENSINI
scores showed very weak correlations with Leu (p = 0.032,
r = 0.107) and CRP (p = 0.05, r = 0.142).

3.3 Model Evaluation
We next evaluated the performance of the classifiers

and regression models, as summarized in Tables 4,5. Two
specific classification models were found to have advan-
tages. Multidimensional evaluation revealed the RF model
performed best in terms of sensitivity, specificity, and recall
in a balanced manner. The XGBoost classifier performed
best in terms of the area under the ROC curve (Fig. 4a). For
the regression models, XGBoost dominated for the predic-
tion of SYNTAX and GENSINI scores (Fig. 4b,c). A key
issue from the clinician’s perspective is whether the method
can explain the results. Practical evidence suggests that
BNP, EF%, lipids, age and glucose are some of the main
risk factors for the development and progression of cardio-
vascular disease, for cardiovascular disease prognosis, and
for the occurrence of adverse cardiovascular events.

4. Discussion
The accuracy of early coronary risk assessment dur-

ing hospitalization is critical for the proper management of

CAD, which requires different treatment modalities accord-
ing to the level of disease severity. During the risk assess-
ment of cardiovascular disease in routine clinical practice,
clinicians tend to overly focus on laboratory indicators and
non-laboratory patient characteristics such as BMI and gen-
der are often underestimated. Although the latter are im-
portant risk factors for cardiovascular disease, they are of-
ten considered less important when assessing disease sever-
ity. Coronary angiography can be a good diagnostic tool
for CAD, but has the disadvantages of being complicated
to perform and prone to adverse reactions. For example,
in one study ascular complications reached 11.7% and the
incidence of contrast nephropathy reached 3.3% [35]. Pa-
tients are also inclined to refuse the test in the early stages
of the disease. Therefore, coronary angiography is gener-
ally used to confirm the diagnosis of CAD after the onset
of obvious significant symptoms. It is not used for the pur-
pose of early screening or diagnosis, thus leading to many
problems such as untimely treatment of patients and poor
disease control.

In the current study we selected 53 clinical indicators
and built ML models to investigate the nonlinear relation-
ship between these indicators and the diagnostic outcome
of CAD patients. Additionally, we constructed ML models
with the aim of assessing the severity of CADpatients based
on clinical indicators. Our findings demonstrate that ML
algorithms can be used to predict the risk of coronary heart
disease, thereby assisting physicians to diagnose the disease
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Table 2. Descriptive and exploratory analyses for categorical risk factors and scores.
Diagnosis SYNTAX GENSINI

Factor N pa Median (P25, P75) pb Median (P25, P75) pc

Sex <0.001 <0.001 <0.001
Male 267 (66.8%) 9 (2, 19.5) 29 (4, 84)
Female 133 (33.3%) 0 (0, 7) 4 (0, 15)

Hypertension <0.001 0.002 0.002
NO 230 (57.5) 2 (0, 12) 7 (0, 50.5)
YES 170 (42.5) 9 (2, 18) 28.5 (5, 84.5)

Type 2 diabetes (T2D) <0.001 <0.001 <0.001
NO 309 (77.3) 5 (0, 13.25) 10 (0, 56)
YES 91 (22.8) 14 (2, 21.5) 42 (8, 98)

Smoking 0.004 0.028 0.007
NO 276 (69) 5 (0, 14) 10 (1, 57.5)
YES 124 (31) 9 (2, 19) 30 (4, 83.5)

Alcohol consumption 0.003 0.307 0.160
NO 344 (83.5) 5 (0, 15.5) 12 (2, 70)
YES 66 (16.5) 6.5 (2, 18.25) 27.5 (4, 88)

Antiplatelet drugs <0.001 0.027 0.047
NO 282 (70.5) 5 (0, 14) 9 (0.75, 65)
YES 118 (29.5) 9 (2, 19) 34 (6.5, 75.5)

ARBs 0.005 0.006 0.011
NO 349 (87.3) 5 (0, 14) 10 (2, 66.5)
YES 51 (12.8) 12 (5, 20) 44.5 (12, 97)

Statins 0.004 0.335 0.751
NO 293 (73.3) 5 (0, 14.5) 10 (2, 70.5)
YES 107 (26.8) 7 (2, 19) 24 (4, 73)

CCBs 0.002 0.064 0.126
NO 314 (78.5) 5 (0, 15) 10 (2, 68)
YES 86 (21.5) 11 (2, 17) 30 (4, 78.25)

Glucose lowering drugs 0.002 0.002 0.001
NO 317 (79.3) 5 (0, 14) 10 (5, 59)
YES 83 (20.8) 12 (2, 21) 36 (8, 98)

LVWMAs <0.001 <0.001 <0.001
NO 313 (78.3) 2 (0, 12) 9 (0, 43)
YES 87 (21.8) 16.5 (5, 26) 70 (13, 115)

pa, p value of diagnosis p erformance; pb, p value of SYNTAX score; pc, p value of GENSINI score; LVWMAs, Left
ventricular wall motion abnormalities; ARBs, angiotensin receptor blockers; CCBs, calcium channel blockers. Median
(P25, P75), the median (25th percentile–75th percentile), we correct these p-values for multiple testing.

more accurately. We evaluated multiple models to com-
pare the efficacy of different ML algorithms. The results
showed that integrated learning outperformed other meth-
ods of diagnosing coronary heart disease by combining the
results of multiple classifiers. In particular, the XGBoost
[36]model identified the top 15 indicators important for dis-
ease prediction (EF%, BNP, HCY, etc.), with an accuracy
>90%. We found that XGBoost is well-suited for typical
structured data such as tabular and time series data, and can
be used for both classification and regression tasks. XG-
Boost also outperformed traditional decision tree models in
terms of training speed and accuracy, while still retaining

good explanatory power [37]. Based on our evaluation of
model performance, we consider XGBoost to be the most
effective model for classifying the individual risk of CAD
in patients with essential hypertension. Gupta et al. have
applied ML in many areas including software maintenance
[21,32], smart homes [28] and medical tasks [24] with out-
standing results [29]. Mittas et al. [8] made the first at-
tempt at applying ML for CAD assessment. They excluded
patients with coronary angiography results suggestive of
non-CAD, and then proceeded to construct a deep learning
model with a mean absolute error (MAE) of 5.6916. How-
ever, their model had a major limitation in that it excluded
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Table 3. Descriptive and exploratory analyses for continuous risk factors and scores.
Risk factor M Mdn SD Min Max Diagnosis (p) SYNTAX (p) GENSINI (p)

Age 58.962 58.000 11.112 28 91 <0.001 <0.001 <0.001
BMI 25.829 25.000 3.613 17 42 0.085 0.087 0.045
SBP 128.000 126.000 17.598 88 187 0.676 0.490 0.244
DBP 77.060 77.000 11.336 47 124 0.265 0.572 0.754
TnI 0.092 0.012 0.518 0.012 8.310 0.603 <0.001 <0.001
Pulse 77.950 76.000 10.049 55 129 0.283 0.572 0.984
CPK 0.977 0.740 0.810 0.220 5.52 0.017 <0.001 <0.001
MB 34.893 28.745 23.694 10.130 179 0.017 <0.001 <0.001
BNP 311.850 90.200 718.036 10.00 6120 0.003 <0.001 <0.001
Leukocytes 6.930 6.685 1.784 3.490 16 0.253 0.016 0.046
Hemoglobin 142.090 142.000 14.598 95 206 0.603 0.897 0.893
K+ 3.8062 3.780 0.346 2.910 5 0.345 0.662 0.630
Na+ 141.5183 141.640 2.684 126.560 149 0.772 0.623 0.567
Cl− 105.721 105.850 2.944 96.700 114 0.603 0.495 0.520
Glu 7.126 6.130 3.218 2.730 25 0.058 0.001 <0.001
TG 1.955 1.730 1.056 0.480 8 0.891 0.825 0.910
TC 4.089 4.040 1.070 1.660 8 <0.001 <0.001 <0.001
HDL 1.007 0.970 0.292 0.450 3 <0.001 <0.001 <0.001
LDL 2.4322 2.350 0.866 0.680 5 <0.001 <0.001 <0.001
CRP 8.129 6.100 7.362 5.000 90 0.283 0.032 0.009
IL6 4.241 2.555 6.671 1.500 74 0.009 <0.001 <0.001
CT 0.035 0.030 0.047 0.020 0.820 0.322 0.002 0.028
Ddimer 131.584 85.000 198.430 0.600 2993 0.017 <0.001 <0.001
Hcy 12.676 11.525 5.434 5.800 59 <0.001 <0.001 <0.001
GHb 6.374 6.000 1.359 4.300 13 <0.001 <0.001 <0.001
EF(%) 60.922 62.680 6.155 30.720 70 <0.001 <0.001 <0.001
BMI, Body Mass Index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TnI, Troponin I; CPK, creatine-
phosphokinase; MB, myoglobin; BNP, brain natriuretic peptide; Glu, glucose; TG, Triglyceride; TC, Total cholesterol; HDL,
high density lipoprotein; LDL, low-density lipoprotein; CRP, C Reactive Protein; IL6, Interleukin 6; CT, clotting time; Hcy, ho-
mocysteine; GHb, Glycosylated Hemoglobin; EF%, ejection fraction; Mdn, median; SD, standard deviation. We correct these
p-values for multiple testing.

the non-diseased population upfront, thereby reducing the
0-factor interference [8]. It is important to note that applica-
tion of ML algorithms in the medical field still faces multi-
ple challenges and limitations. These include ensuring the
transparency and interpretability of algorithms, as well as
addressing data imbalance and privacy issues. Further re-
search is necessary to overcome these obstacles and to ad-
vance the application of ML in the field of CAD diagnosis
[38].

Exploratory and statistical analyses have shown that
several risk factors for CAD are important for predicting
whether patients have this disease [39]. In the present study,
we provided objective evidence of risk factors that affect
SYNTAX and GENSINI scores in the absence of knowl-
edge about the relationship between SYNTAX scores and
predictors [24].

Regarding future research on the application of ma-
chine learning in the diagnosis of coronary heart disease,
insights can be gleaned from other fields of study. Yu et
al. [40] explored the issue of disease causality inference by

constructing a machine learning knowledge base to identify
correlations among multiple diseases. Shamseddine et al.
[41] proposed privacy-preserving federated learning mod-
els, providing novel ideas for developing machine learning
models that protect patient privacy. Similarly, Wassan et
al. [24] developed a solution to patient privacy concerns
by utilizing federated machine learning to facilitate mobile
collaborative development of standard prediction models,
while storing all training data locally, thereby separating
machine learning from data storage in the cloud to pre-
vent privacy issues in medical data sharing. In the future,
building a coronary heart disease knowledge base can aid
in comprehending the linkages between coronary heart dis-
ease and multiple related illnesses. Furthermore, to miti-
gate the challenge of insufficient medical data for machine
learning modeling due to patient privacy issues, adopting a
federated learning approach may be worthwhile.

In summary, the main findings of this study concerned
the diagnosis of CAD and evaluation of its severity. It is
important to accurately predict whether a patient has CAD,
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Fig. 3. Similarities and differences in correlation factors in regression models and statistical analysis. S: SYNTAX score; MS:
machine learning SYNTAX score; G: GENSINI score; MG: machine learning GENSINI score. The frequency represents the number
oftimes that factor was considered to have an effect on the score in the S, MS, G, and MG scoring methods. EF%, ejection fraction; Hcy,
homocysteine; Hb, Hemoglobin; HDL, high density lipoprotein; BNP, brain natriuretic peptide; Glu, glucose; TC, Total cholesterol; MB:
myoglobin; CK: Creatine Kinase; LDL, low-density lipoprotein; IL6, Interleukin 6; WBC, white blood cell; CRP, C Reactive Protein;
Leu, leucocyte; SBP, systolic blood pressure; DBP, diastolic blood pressure; TnI, Troponin I; CPK, creatine-phosphokinase; CT, clotting
time; GHb, Glycosylated Hemoglobin; WMA, Left ventricular wall motion abnormalities. Green indicates statistically significant or
meaningful in the machine learning models, while red indicates not meaningful.

Fig. 4. Model evaluation. (a) Comparison of ROC curves of diagnostic models. (b) Scatterplot of the regression model based on
SYNTAX score. (c) Scatterplot of the regression model based on GENSINI score. ROC, receiver operating characteristic.

since the clinical management of this condition involves or-
dering downstream investigations or coronary angiography
procedures prior to hospitalization. Accurate identification

of people without CADwould allow them to avoid coronary
angiography and to receive other recommendations, such as
improving their lifestyle and undergoing regular physical
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Table 4. Multidimensional evaluation of diagnostic models.
Model AUC R2 Accuracy Precision Recall F1-score

SVM 0.670 0.532 0.653 0.653 1.000 0.790
XGB 0.728 0.203 0.727 0.745 0.886 0.809
RF 0.705 0.094 0.752 0.753 0.924 0.830
NB 0.649 0.714 0.612 0.808 0.532 0.641
LR 0.632 0.021 0.769 0.780 0.899 0.835
GBC 0.632 0.052 0.785 0.791 0.911 0.847
Adaboots 0.687 0.240 0.719 0.732 0.899 0.867
R2, determination coefficient; AUC, Area Under the ROC Curve; SVM, Sup-
port Vector Machine; XGB, eXtreme Gradient Boosting; RF, Random Forest;
NB, Naive Bayes; LR, Logistic Regression; GBC, Gradient Boosting Classifier;
Adaboots, Adaptive Boosting.

Table 5. Regression model evaluation.
GENSINI-model MAE R2 MSE SYNTAX-model MAE R2 MSE

XGB 4.876 0.484 56.753 XGB 4.629 0.535 51.141
Decision Tree 6.167 0.341 72.490 Decision Tree 5.834 0.155 92.968
linear 6.110 0.523 104.316 linear 5.987 0.064 103.040
SVM 5.616 0.234 84.271 SVM 5.246 0.240 83.690
K-Neighbors 5.987 0.065 102.913 K-Neighbors 5.493 0.036 113.994
Random Forest 5.395 0.415 64.359 Random Forest 6.376 0.307 76.268
Ada-boost 5.492 0.246 82.994 Ada-boost 6.425 0.305 76.468
Bagging 5.933 0.146 94.028 Bagging 5.735 0.163 92.111
Extra-Tree 6.58 0.211 86.743 Extra-Tree 5.834 0.155 92.968
MSE, mean squared error; MAE, mean absolute error; R2, determination coefficient; SVM, Support Vec-
tor Machine; XGB, eXtreme Gradient Boosting; Ada-boots, Adaptive Boosting; K-Neighbors, K-Nearest
Neighbors Regression.

examination. The results of the feature selection algorithm
identified some of the risk factors that contribute to varia-
tion in the distribution of SYNTAX and GENSINI scores.

The application of ML prediction models to cardio-
vascular disease has been evaluated previously in patients
with ACS [42]. ML algorithms for CAD have been ap-
plied in some clinical settings, including (i) the prediction
of CAD using clinical variables and an interdisciplinary ap-
proach; (ii) improving the detection of functional CAD us-
ing computational hemodynamics (e.g., FFR-based algo-
rithms); and (iii) assessing the ability to automatically pre-
dict CAD based on myocardial perfusion imaging. Current
clinical practice for patients with suspected CAD relies on
invasive coronary angiography and the post hoc calculation
of a score based on the coronary angiographic findings to
guide further treatment.

There have been few comprehensive studies of CAD
through the lens of ML [38]. In the clinical setting, the in-
dividual risk model established here and based on the XG-
Boost algorithm could be further developed into a supple-
mentary diagnostic system. The model could be applied for
screening CAD in the population and also to assist physi-
cians in diagnosing CAD during outpatient visits. This
could ultimately improve early detection and control, with a
high degree of practicality and feasibility. The model could

also provide a realistic approximation of the coronary load
score to assess the complexity of CAD.

The present study has several limitations. The large
number of patients with a coronary score of zero and the
non-homogeneous data created difficulties for the modeling
process due to limitation of the sample size. The distribu-
tion of patients with non-zero scores was not concentrated
[43]. The risk stratification ML framework was developed
to help clinicians identify patients with suspected coronary
heart disease who should be referred for further examina-
tion, or who should undergo emergency surgery.

Further work is needed to optimize the model by using
data from multicenter studies with large sample sizes. The
model then needs to be validated in a prospective cohort and
deployed into the community and clinic. In addition, mul-
tidisciplinary factors could be integrated into the model by
using bioinformatic and pharmacogenomic analysis to ex-
tract other validated biomarkers such as specific genotypes.
In brief, once validated using prospective external cohorts,
the model established in this study could help clinicians to
make decisions that are often still quite challenging. This
will eventually ease the pressure on hospitals and doctors in
the COVID-19 era and speed up the diagnosis and treatment
process.
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5. Conclusions

Machine learning models based on electronic medical
records can effectively assess the severity of coronary heart
disease and can identify a new set of new risk factors in the
disease, and this study points to new research directions for
future work.

Abbreviations

CAD, coronary artery disease; ML, machine learn-
ing; ACS, acute coronary syndrome; PCI, percutaneous
coronary intervention; CABG, coronary artery bypass graft;
XGBoost, extreme gradient boosting; RF, random forest;
MSE, mean squared error; MAE, mean absolute error;
MAPE, mean absolute prediction error; R2, determination
coefficient; SVM, Support Vector Machine; NB, Naive
Bayes; LR, Logistic Regression; GBC, Gradient Boosting
Classifier; Adaboots, Adaptive Boosting; K-Neighbors, K-
Nearest Neighbors Regression; BMI, Body Mass Index;
SBP, systolic blood pressure; DBP, diastolic blood pres-
sure; TnI, Troponin I; CPK, creatine-phosphokinase; MB,
myoglobin; BNP, brain natriuretic peptide; Glu, glucose;
TG, Triglyceride; TC, Total cholesterol; HDL, high density
lipoprotein; LDL, low-density lipoprotein; CRP, C Reac-
tive Protein; IL6, Interleukin 6; CT, clotting time; Hcy, ho-
mocysteine; GHb, Glycosylated Hemoglobin; EF%, ejec-
tion fraction; LVWMAs, Left ventricular wall motion ab-
normalities; ARBs, angiotensin receptor blockers; CCBs,
calcium channel blockers; FN, False Negative; TP, True
Positive; TN, True Negative; FP, False Positive.

Availability of Data and Materials

The datasets used and/or analyzed during the current
study are available from the corresponding author on rea-
sonable request.

Author Contributions

XM and JGD designed the research study. AA and
WQH performed the research. KK, PFL and HM collected
the data. KK and RR analyzed the data. PFL, HM, LQ and
JGD provided help and advice on the study. AA and WQH
wrote the manuscript. All authors contributed to editorial
changes in the manuscript. All authors read and approved
the final manuscript.

Ethics Approval and Consent to Participate

The study was conducted in accordance with the Dec-
laration of Helsinki. The trial was approved by the Ethics
Committee of the First Affiliated Hospital of XinjiangMed-
ical University (reference number K202108-19). Each par-
ticipant in the study provided written informed consent
prior to enrollment.

Acknowledgment
The authors thank all the technique professionals from

the catheterization laboratory, for their assistance in the col-
lection of coronary angiographies.

Funding
This study was supported by the Key Research and

Development Task of Xinjiang Uygur Autonomous Region
Research on Key Technologies and Optimization Strategies
for Individualized Precision Diagnosis and Treatment Sys-
tem of Cardiovascular Diseases (2022B03022).

Conflict of Interest
The authors declare no conflict of interest.

Supplementary Material
Supplementary material associated with this article

can be found, in the online version, at https://doi.org/10.
31083/j.rcm2406168.

References
[1] Raza A, Mehmood A, Ullah S, Ahmad M, Choi GS, On BW.

Heartbeat Sound Signal Classification Using Deep Learning.
Sensors (Basel, Switzerland). 2019; 19: 4819.

[2] Xiao X, Gan F, Yu H. Tomographic Ultrasound Imaging in the
Diagnosis of Breast Tumors under the Guidance of Deep Learn-
ing Algorithms. Computational Intelligence and Neuroscience.
2022; 2022: 9227440.

[3] Aglinskas A, Hartshorne JK, Anzellotti S. Contrastive ma-
chine learning reveals the structure of neuroanatomical variation
within autism. Science. 2022; 376: 1070–1074.

[4] Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, et al. Au-
tomatic assessment of glioma burden: a deep learning algorithm
for fully automated volumetric and bidimensional measurement.
Neuro-oncology. 2019; 21: 1412–1422.

[5] Kim J, Kang U, Lee Y. Statistics and Deep Belief Network-
Based Cardiovascular Risk Prediction. Healthcare Informatics
Research. 2017; 23: 169–175.

[6] Taha A, Ochs V, Kayhan LN, Enodien B, Frey DM, Krähen-
bühl L, et al. Advancements of Artificial Intelligence in Liver-
Associated Diseases and Surgery. Medicina. 2022; 58: 459.

[7] Kato T, Uemura Y, Naya M, Momose M, Matsumoto N, Suzuki
E, et al. Impact of renal dysfunction on the choice of diagnostic
imaging, treatment strategy, and outcomes in patients with stable
angina. Scientific Reports. 2019; 9: 7882.

[8] Mittas N, Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI,
Theodoroula NF, Papazoglou AS, et al. A Risk-Stratification
Machine Learning Framework for the Prediction of Coronary
Artery Disease Severity: Insights From the GESS Trial. Fron-
tiers in Cardiovascular Medicine. 2022; 8: 812182.

[9] Genders TSS, Coles A, Hoffmann U, Patel MR, Mark DB, Lee
KL, et al. The External Validity of Prediction Models for the Di-
agnosis of Obstructive Coronary Artery Disease in PatientsWith
Stable Chest Pain: Insights From the PROMISE Trial. JACC.
Cardiovascular Imaging. 2018; 11: 437–446.

[10] Ein Shoka AA, Alkinani MH, El-Sherbeny AS, El-Sayed A,
Dessouky MM. Automated seizure diagnosis system based on
feature extraction and channel selection using EEG signals.
Brain Informatics. 2021; 8: 1.

[11] Skorić B, Čikeš M, Ljubas Maček J, Baričević Ž, Škorak I, Gaš-
parović H, et al. Cardiac allograft vasculopathy: diagnosis, ther-

11

https://doi.org/10.31083/j.rcm2406168
https://doi.org/10.31083/j.rcm2406168
https://www.imrpress.com


apy, and prognosis. Croatian Medical Journal. 2014; 55: 562–
576.

[12] Kou T, Luo H, Yin L. Relationship between neutrophils to HDL-
C ratio and severity of coronary stenosis. BMC Cardiovascular
Disorders. 2021; 21: 127.

[13] De Metrio M, Milazzo V, Rubino M, Cabiati A, Moltrasio M,
Marana I, et al. Vitamin D plasma levels and in-hospital and
1-year outcomes in acute coronary syndromes: a prospective
study. Medicine. 2015; 94: e857.

[14] Wang KY, Zheng YY, Wu TT, Ma YT, Xie X. Predictive Value
of Gensini Score in the Long-Term Outcomes of Patients With
Coronary Artery DiseaseWho Underwent PCI. Frontiers in Car-
diovascular Medicine. 2022; 8: 778615.

[15] Rampidis GP, Benetos G, Benz DC, Giannopoulos AA, Buechel
RR. A guide for Gensini Score calculation. Atherosclerosis.
2019; 287: 181–183.

[16] Gao J, McCann A, Laupsa-Borge J, Nygård O, Ueland PM,
Meyer K. Within-person reproducibility of proteoforms related
to inflammation and renal dysfunction. Scientific Reports. 2022;
12: 7426.

[17] Li M, Wang S, Zhang Y, Ma S, Zhu P. Correlation Between
Pigment Epithelium-Derived Factor (PEDF) level and Degree
of Coronary Angiography and Severity of Coronary Artery Dis-
ease in a Chinese Population.Medical ScienceMonitor: Interna-
tional Medical Journal of Experimental and Clinical Research.
2018; 24: 1751–1758.

[18] Niepel M, Hafner M, Mills CE, Subramanian K, Williams EH,
Chung M, et al. A Multi-center Study on the Reproducibility of
Drug-Response Assays inMammalian Cell Lines. Cell Systems.
2019; 9: 35–48.e5.

[19] Walsh EI, Chung Y, Cherbuin N, Salvador-Carulla L. Experts’
perceptions on the use of visual analytics for complex mental
healthcare planning: an exploratory study. BMC Medical Re-
search Methodology. 2020; 20: 110.

[20] Zhang B, Dai J, Zhang T. NeoAnalysis: a Python-based tool-
box for quick electrophysiological data processing and analysis.
Biomedical Engineering Online. 2017; 16: 129.

[21] Gaurav A, Gupta BB, Panigrahi PK. A comprehensive survey on
machine learning approaches for malware detection in IoT-based
enterprise information system. Enterprise Information Systems.
2023; 17: 439–463.

[22] Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X. Integra-
tive radiogenomics analysis for predicting molecular features
and survival in clear cell renal cell carcinoma. Aging. 2021; 13:
9960–9975.

[23] Liu Z, Zhou T, Han X, Lang T, Liu S, Zhang P, et al. Mathemat-
ical models of amino acid panel for assisting diagnosis of chil-
dren acute leukemia. Journal of Translational Medicine. 2019;
17: 38.

[24] Wassan S, Suhail B, Mubeen R, Raj B, Agarwal U, Khatri E, et
al. Gradient Boosting for Health IoT Federated Learning. Sus-
tainability. 2022; 14: 16842.

[25] Elgin Christo VR, Khanna Nehemiah H, Minu B, Kannan A.
Correlation-Based Ensemble Feature Selection Using Bioin-
spired Algorithms and Classification Using Backpropagation
Neural Network. Computational and Mathematical Methods in
Medicine. 2019; 2019: 7398307.

[26] Batra S, Khurana R, KhanMZ, BoulilaW, Koubaa A, Srivastava
P. A Pragmatic Ensemble Strategy for Missing Values Imputa-
tion in Health Records. Entropy. 2022; 24: 533.

[27] Mathioudakis NN, Abusamaan MS, Shakarchi AF, Sokolinsky
S, Fayzullin S, McGready J, et al. Development and Valida-
tion of a Machine Learning Model to Predict Near-Term Risk of

Iatrogenic Hypoglycemia in Hospitalized Patients. JAMA Net-
work Open. 2021; 4: e2030913.

[28] Cvitić I, Peraković D, Periša M, Gupta B. Ensemble machine
learning approach for classification of IoT devices in smart
home. International Journal of Machine Learning and Cybernet-
ics. 2021; 12: 3179–3202.

[29] Tay B, Mourad A. Intelligent Performance-Aware Adaptation of
Control Policies for Optimizing Banking Teller Process Using
Machine Learning. IEEE Access. 2020; 8: 153403–153412.

[30] Gao Y, Chao H, Cavuoto L, Yan P, Kruger U, Norfleet JE, et al.
Deep learning-based motion artifact removal in functional near-
infrared spectroscopy. Neurophotonics. 2022; 9: 041406.

[31] Mahendran M, Lizotte D, Bauer GR. Quantitative methods for
descriptive intersectional analysis with binary health outcomes.
SSM - Population Health. 2022; 17: 101032.

[32] Almomani A, Alauthman M, Shatnawi MT, Alweshah M, Al-
rosan A, Alomoush W, et al. Phishing website detection with
semantic features based on machine learning classifiers: A com-
parative study. International Journal on SemanticWeb and Infor-
mation Systems (IJSWIS). 2022; 18: 1–24.

[33] Amiri MM, Tapak L, Faradmal J, Hosseini J, Roshanaei G. Pre-
diction of Serum Creatinine in Hemodialysis Patients Using a
Kernel Approach for Longitudinal Data. Healthcare Informatics
Research. 2020; 26: 112–118.

[34] Fan N, Meng K, Zhang Y, Hu Y, Li D, Gao Q, et al. The effect
of ursodeoxycholic acid on the relative expression of the lipid
metabolism genes in mouse cholesterol gallstone models. Lipids
in Health and Disease. 2020; 19: 158.

[35] Tavakol M, Ashraf S, Brener SJ. Risks and complications of
coronary angiography: a comprehensive review. Global Journal
of Health Science. 2012; 4: 65–93.

[36] Han GS, Li Q, Li Y. Comparative analysis and prediction of
nucleosome positioning using integrative feature representation
and machine learning algorithms. BMC Bioinformatics. 2021;
22: 129.

[37] Sammani A, Jansen M, de Vries NM, de Jonge N, Baas AF,
Te Riele ASJM, et al. Automatic Identification of Patients With
Unexplained Left Ventricular Hypertrophy in Electronic Health
Record Data to Improve Targeted Treatment and Family Screen-
ing. Frontiers in Cardiovascular Medicine. 2022; 9: 768847.

[38] LuH,YaoY,WangL,Yan J, Tu S, XieY, et al. Research Progress
ofMachine Learning andDeep Learning in Intelligent Diagnosis
of the Coronary Atherosclerotic Heart Disease. Computational
and Mathematical Methods in Medicine. 2022; 2022: 3016532.

[39] Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Ke-
bria PM, Khozeimeh F, et al. Machine learning-based coronary
artery disease diagnosis: A comprehensive review. Computers
in Biology and Medicine. 2019; 111: 103346.

[40] Yu HQ, Reiff-Marganiec S. Learning Disease Causality Knowl-
edge From the Web of Health Data: International Journal on Se-
mantic Web and Information Systems. 2022; 18: 1–19.

[41] Shamseddine H, Otoum S, Mourad A. On the Feasibility of Fed-
erated Learning for Neurodevelopmental Disorders: ASD De-
tection Use-Case. In: GLOBECOM 2022 - 2022 IEEE Global
Communications Conference (pp. 1121–1127). IEEE: Rio de
Janeiro. 2022.

[42] Qin L, Qi Q, Aikeliyaer A, Hou WQ, Zuo CX, Ma X. Machine
learning algorithm can provide assistance for the diagnosis of
non-ST-segment elevation myocardial infarction. Postgraduate
Medical Journal. 2022. (online ahead of print)

[43] Souza PF, Xavier DR, Suarez Mutis MC, da Mota JC, Peiter PC,
de Matos VP, et al. Spatial spread of malaria and economic fron-
tier expansion in the Brazilian Amazon. PLoS ONE. 2019; 14:
e0217615.

12

https://www.imrpress.com

	1. Introduction 
	2. Materials and Methods
	2.1 Methods
	2.2 Participants
	2.3 Model Building Process
	2.3.1 Database Creation
	2.3.2 Data Processing and Feature Selection
	2.3.3 Model Building
	2.3.4 Model Interpretation and Evaluation


	3. Results
	3.1 Predictive Factors
	3.2 Visualization Analysis
	3.3 Model Evaluation

	4. Discussion
	5. Conclusions
	Abbreviations
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest
	Supplementary Material

