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Abstract

In recent years, electronic stethoscopes have been combined with artificial intelligence (AI) technology to digitally acquire heart sounds,
intelligently identify valvular disease and congenital heart disease, and improve the accuracy of heart disease diagnosis. The research
on AI-based intelligent stethoscopy technology mainly focuses on AI algorithms, and the commonly used methods are end-to-end deep
learning algorithms and machine learning algorithms based on feature extraction, and the hot spot for future research is to establish a large
standardized heart sound database and unify these algorithms for external validation; in addition, different electronic stethoscopes should
also be extensively compared so that the algorithms can be compatible with different. In addition, there should be extensive comparison of
different electronic stethoscopes so that the algorithms can be compatible with heart sounds collected by different stethoscopes; especially
importantly, the deployment of algorithms in the cloud is a major trend in the future development of artificial intelligence. Finally, the
research of artificial intelligence based on heart sounds is still in the preliminary stage, although there is great progress in identifying
valve disease and congenital heart disease, they are all in the research of algorithm for disease diagnosis, and there is little research on
disease severity, remote monitoring, prognosis, etc., which will be a hot spot for future research.
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1. Introduction
Valvular heart disease (VHD) is a condition in which

the valves of the mitral, tricuspid, aortic and pulmonary
valves become diseased due to rheumatic fever, mucus
degeneration, degenerative changes, congenital malforma-
tions, ischemic necrosis, infection or trauma, which affects
the normal flow of blood and thus causes abnormal heart
function [1]. Approximately 2 million people in China suf-
fer from VHD, and 150,000 new cases of VHD are diag-
nosed each year [2]. Congenital heart disease (CHD) is de-
fined as a gross structural abnormality of the heart or great
vessels [3], common diseases in this category include atrial
septal defects (ASDs), patent foramen ovale, ventricular
septal defects (VSDs), and patent ductus arteriosus (PDA).

Although imaging tools are the primary methods for
diagnosing VHD and CHD, physical examination, which
includes cardiac auscultation, is a screening tool for VHD
and CHD. Auscultation plays a key role in the diagnosis
of VHD and CHD [4–6]. In the context of analysing heart
sound signals, computer-aided detection technology can be
a useful and cost-effective tool for acquiring and analysing
these signals in a quantitative manner, with the added ben-
efits of speed and efficiency [7].

We performed a narrative literature review, and here,
we review the recent progress achieved using machine
learning applications with heart sound signals derived from

VHD and CHD.We examine the advantages and limitations
of using artificial intelligence (AI) techniques in the field of
VHD and CHD auscultation and suggest some promising
future research directions in this field.

2. Overview of Heart Sounds and Heart
Murmurs

Heart sounds are formed by vibrations caused by car-
diovascular activities such as heart contractions, heart valve
closures, and ventricular wall compressions. According to
the order of occurrence in the cardiac cycle, heart sounds
are divided into four components: the first heart sound (S1),
the second heart sound (S2), the third heart sound (S3) and
the fourth heart sound (S4) [8,9]. In cardiac physiology,
the period between S1 and S2 in the same cardiac cycle is
referred to as systole, while the period between S2 and the
S1 in the subsequent cycle is referred to as diastole. Heart
murmur refers to the abnormal sound produced by the vibra-
tion of the ventricular wall, valves or blood vessels due to
the turbulence of blood in the heart or blood vessels during
systole or diastole, in addition to heart sounds, which are
noises with different frequencies, different intensities and
longer durations. Fig. 1 shows phonocardiograms (PCGs)
of different diseases.
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Fig. 1. Normal phonocardiogram and different heart disease phonocardiograms. Note: The figure shows the phonocardiogram of a
normal heart, some valvular heart disease and some congenital heart disease. The red arrow points to the murmur. S1: First Heart Sound;
S2: Second Heart Sound.

3. Principles of AI-Based Cardiac
Auscultation

Cardiac auscultation is a qualitativemethod for assess-
ing heart sounds, heart rate, pericardial friction sounds, etc.
The advent of the digital stethoscope, augmented with ana-
lytical software, has revolutionized its utility, enabling ob-
jective and quantitative assessments of cardiac function in a
clinical setting. Automated heart sound analysis in clinical
applications usually consists of three steps: pre-processing,
segmentation and classification. Pre-processing includes
denoising, down-sampling, and normalizing data; Segmen-
tation includes audio cutting and feature extraction; and
classification model construction includes network build-
ing and model training.

3.1 Heart Sound Preprocessing
The audio data production standards of different

datasets vary greatly, and the external interference pro-
duced by high-frequency and low-frequency environmen-
tal noises, human voices and heart sounds greatly restricts
the heart sounds that can be collected by electronic stetho-
scopes during auscultation. The signal and noise generated
after performing the wavelet transform not only change the
scale of the wavelet coefficients but also decrease the ac-
curacy of the cardiac signal analysis. This eventually leads
to differences in the various audio signals, mainly in the
audio sampling rate, number of channels, length, and self-
contained noise reduction. Therefore, data preprocessing is
needed for all audio files, and these differences need to be
addressed before analysing the obtained datasets [10,11].
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The heart sound signal is first denoised to improve
its signal-to-noise ratio; this is often executed with differ-
ent filter thresholds and fixed thresholds for signal denois-
ing. Next, the data need to be normalized. At present,
the most commonly used normalization methods include Z
score normalization, min-max normalization, and the func-
tional transformation method. For unbalanced datasets, the
original data classification imbalance is often addressed
through undersampling, which aims to select a part of the
data from the majority set and combine these data with the
rest of the dataset to form a new dataset [12].

3.2 Heart Sound Segmentation

From the perspective of signal processing, a heart
sound is a quasiperiodic nonsmooth random signal that con-
sists of a mixture of normal heart sounds, murmurs and
noise. The distinction between normal and abnormal heart
sounds mainly lies in the identification of murmur features,
so the extraction of effective murmur features from the col-
lected heart sounds is critical for studying these sounds. In
contrast to methods for addressing general pattern recog-
nition problems, most heart sound analysis algorithms first
segment murmurs before extracting heart sound features.
Training a computer to think and solve problems like a hu-
man involves, to some extent, mimicking the thought pro-
cess of the human brain. When interpreting heart sounds,
human experts distinguish between S1 and S2 based on
pitch, intensity and duration and finally identify the sys-
tole and diastole; this is similar to the process of com-
putational analysis. In traditional signal processing meth-
ods, heart sound segmentation is performed by the Hilbert
transform, hidden semi-Markov models (HSMMs), the av-
erage Shannon energy envelope algorithm, the Viola inte-
gration method, the short-time modified Hilbert transform
algorithm, etc. [4,13]. In recent years, several machine
learning methods have been developed for heart sound seg-
mentation. Algorithms based on logistic regression (LR)
combined with hidden Markov models, genetic algorithms
for spectral change detection, end-to-end methods based
on convolutional long short-term memory (CLSTM) net-
works, and deep convolutional neural networks (CNNs) for
U-Net segmentation have been established for heart sound
segmentation [14–17].

Traditional signal processing methods are efficient
only if certain assumptions, such as finite-order linear sys-
tem filtering, complex-domain Gaussian-distributed speech
and noise, and band independence, are valid for the given
application scenario and the statistics used in filtering can
be accurately estimated. While machine learning methods
do not always require these assumptions, the core of a ma-
chine learningmodel is a complex, nonlinear function; thus,
these models can often achieve better results in real scenar-
ios in which adequate training sets are available. However,
machine learningmodels tend to perform less robustlywith-
out effective constraints and sufficient training data; more-

over, systems that perform well in certain cases may per-
form poorly in other scenarios. In addition, the performance
of machine learning methods is related to the utilized opti-
mization metrics; for example, deep learning systems that
use the signal-to-noise ratio as the main optimization metric
may have large signal distortions that may be detrimental to
heart sound segmentation. Therefore, methods based on a
combination of traditional signal processing techniques and
machine learning techniques can utilize the advantages of
the underlying methods while addressing their limitations,
allowing these approaches to perform heart sound segmen-
tation in an accurate and efficient manner [18].

Feature extraction and feature selection can be used to
accurately segment heart sounds and classify diseases. The-
oretically, the classification performance should improve
as more features are input during the training process. In
practice, the classification performance decreases when the
number of feature inputs exceeds a certain value after the
number of training samples is set. Features are charac-
teristics of the human brain that can be used to automati-
cally identify and distinguish between objects, and they are
similar in concept to variables in regression analysis. The
features that can be recognized by machines are often in
the form of numbers or symbols, while human experts ex-
tract physiological or pathological information from heart
sounds through features such as the heart rate, heart rhythm,
murmur timing and shape, heart sound frequency and the
presence of additional heart sounds [19].

Alqudah et al. [20] demonstrated that higher-order
spectral analysis methods in the field of digital signal pro-
cessing extract significantly better features than lower-
order feature extraction methods such as the short-time
Fourier transform and wavelet transform. In addition, the
second-order spectral method is the most widely used ap-
proach among the higher-order spectral methods, as it can
effectively suppress phase relations in signals while detect-
ing and quantifying the phase coupling of non-Gaussian sig-
nals. In recent studies, attention maps have been obtained
by extracting features from data through self-attention
mechanisms. This enables the derivation of the importance
levels of different local information in the whole input im-
age [21].

4. Classification Model Construction
Traditional heart sound classification algorithms re-

quire that the feature extraction operators be manually set
(Fig. 2), and such methods generally lack model generaliz-
ability and have limitations in terms of nonlinear data fea-
ture extraction. In recent years, scholars have proposed
transforming the original heart sound signal into a two-
dimensional heart sound time-frequency map with some
transformations, such as the short-time Fourier transform,
wavelet transform, and mel-frequency cepstral coefficients
(MFCCs) [5,22], and training deep convolutional networks
in the frequency domain for classification purposes [23,24].
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Fig. 2. Structural diagram of the heart sound identification process. Note: HSMM, Hilbert transform, hidden semi-Markov model;
CLSTM, convolutional long short-term; CNN, convolutional neural network; MFCC, Meier spectral coefficient; GAP, global average
pooling; MLP, multilayer perceptron; LR, logistic regression; CNN, convolutional neural network; RNN, recurrent neural network; VSM,
vector space model.

Recently, the transformer and multilayer perceptron
(MLP) techniques in deep learning have attracted the atten-
tion of many researchers. Traditional convolutional neu-
ral networks (CNNs) can automatically extract local in-
formation from data by conducting local weight sharing
among the convolutional kernels; however, these models
have difficulty accessing global information. Analyses of
the second-order spectral feature maps of heart sound data
have shown that in addition to certain local saliency char-
acteristics exhibited by heart sound signals, global distribu-
tion characteristics are crucial for heart sound classification.
An attempt has been made to design a hybrid model by us-
ing an MLP algorithm, global average pooling (GAP), and
the convolutional technique instead of self-attention when
constructing the training model [22]. The network was di-
vided into three parts with different perceptual abilities, i.e.,
a global perceptron (GP), a partition perceptron (PP), and a
local perceptron (LP), to classify the heart sound signals in
all directions. Deploying deep learning algorithms to the
cloud is a major trend in future research.

5. Heart Sound Datasets
The scarcity of heart sound data, particularly the un-

availability of publicly accessible and high-quality heart
sound databases, poses a significant challenge to the devel-
opment and evaluation of AI auscultation algorithms, intel-
ligent heart sound diagnosis and analysis technology, and
auscultation screening applications [20]. A review of the
commonly used heart sound databases that are available on
the internet is presented in Table 1. Current heart sound
databases have low applicability due to differences in elec-
tronic stethoscopes, timing, location, etc., and establishing
a standardized heart sound database is the cornerstone of
future intelligent heart sound research.

6. Electronic Stethoscope
An electronic stethoscope is an important tool for

achieving AI-based heart sound diagnosis. The stetho-
scope is an instrument that is commonly used by all doctors.

While its invention dates as far back as 1816, several tech-
nological evolutions have occurred over the past 200 years,
the latest of which is the electronic stethoscope, which was
first developed in the early 1990s [25]. Since then, elec-
tronic stethoscopes with various functions have been pro-
posed. Table 2 shows the advantages and disadvantages of
different stethoscopes in terms of their recording frequen-
cies, communication techniques, data losses, filtering tech-
niques and environmental filtering techniques [26–29].

7. Applications in CHD Diagnosis
The high incidence of CHD and the dangers leading

to poor prognosis are widely recognized. For young chil-
dren, early detection and treatment are important to reduce
the mortality rate of CHD. At present, the CHD diagnosis
process is divided into two steps: first, for the initial diagno-
sis, the doctor makes a preliminary judgement on whether
the patient has CHD through cardiac auscultation; then, the
initial diagnosis is confirmed by echocardiography in sus-
pected cases. Most patients with CHD are not diagnosed
in the early stages of life due to the lack of specific symp-
toms [30]. This prevents the infant from receiving timely
and effective surgical repair or palliative care. Although
echocardiography is the gold standard for verifying CHD
cases, it usually takes more than 10 minutes to complete
[30]. Therefore, in resource-limited areas, it is impractical
to perform an echocardiogram on every screening subject.
In many areas, community screening for congenital heart
disease is often performed by auscultation [31]. With the
development of imaging technology, an increasing num-
ber of physicians are losing the skill of auscultation [32],
and in the absence of symptoms of congenital heart disease,
physicians will not perform ultrasound and other tests on
patients. In addition to these reasons, the unequal distribu-
tion of medical resources is also an important one, thus cre-
ating a paradox: the number of young children who need
to be screened is large, but few doctors have the required
clinical auscultation experience [33]. Some AI-based aus-
cultation applications for CHD diagnosis are summarized
in Table 3 (Ref. [4,5,21–24,34–40]).
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Table 1. Detailed profiles of the utilized databases.
Dataset Sensor Date of Publication Number of Recordings Age (year) Rate (HZ) Disease Position Website

Pascal Challenge Digi Scope 2011 656 0–17 4000 CHD Four typical positions http://www.peterjbentley.com/heartchallenge/index.html
HSCT -11 ThinkLabs Rhythm 2016 206 - 11,025 Unknown Four typical positions http://www.diit.unict.it/hsct11/
Digiscope Litmann 3200 2019 29 0–17 800–22,050 Unknown Auscultatory mitral area http://www.peterjbentley.com/heartchallenge/
HSS EKO-CORE - 170 - 4000 VHD Four typical positions http://www.compare.openaudio.eu/
CirCor Litmann 3200 2021 1568 0–30 4000 CHD Four typical positions https://www.physionet.org/content/circor-heart-sound/1.0.1/
PhysioNet/CinC https://www.physionet.org/content/challenge-2016/1.0.0/
AADHSDB Littmann E4000 2015 151 - 4000 CHD Tricuspid area
MITHSDB WAM E-stethoscope 2007 121 - 44,100 VHD Nine different positions
AUTHHSDB AUDIOSCOPE 2014 45 18–90 4000 VHD Apex
TUTHSDB Littmanns 3200 2013 44 - 4000 VHD Four typical positions
UHAHSDB Prototype stethoscopes 2013 55 18–40 4000 VHD Unknown
DLUTHSDB Littmann3200 2012 509 4–88 8000 CHD Multiple positions at chest
SUAHSDB JABES 2015 112 16–88 800–22,050 Unknown Apex
SSHHSDB Unknown - 35 - 8000 VHD 2nd intercostal
SUFHSDB JABES 2015 225 23–35 4000–44,100 Foetal Maternal abdomen
Notes: HSCT -11: Heart Sounds Catania 2011 Database; HSS: Heart Sound Signal dataset; PhysioNet: Research Resource for Complex Physiologic Signals; CinC: Computing in Cardiology Challenge;
PhysioNet/CinC Challenge Database: This database includes nine independent databases: the Aalborg University heart sounds database (AADHSDB), the Massachusetts Institute of Technology heart sounds
database (MITHSDB), the Aristotle University of Thessaloniki heart sounds database (AUTHHSDB), the Khajeh Nasir Toosi University of Technology heart sounds database (TUTHSDB), the University of
Haute Alsace heart sounds database (UHAHSDB), the Dalian University of Technology heart sounds database (DLUTHSDB), the Shiraz University adult heart sounds database (SUAHSDB), the Skejby Sygehus
Hospital heart sounds database (SSHHSDB), and the Shiraz University foetal heart sounds database (SUFHSDB). CHD, congenital heart disease; VHD, valvular heart disease.
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Table 2. Characteristics of different electronic stethoscopes in terms of various aspects.
Electronic stethoscope Recording frequencies Communication

technology
Data loss Filtering techniques Advantages and disadvantages

3M Littmann 3200
Bell mode (20–1000 Hz)

Bluetooth Acceptable ANC friction noise dampening
The stored records may be accessed by outside users by exporting them to WAVE audio files.

Diaphragm mode (20–2000 Hz) If the LED display is damaged, it is extremely difficult to record and adjust settings.
Extended mode (20–2000 Hz)

ThinkLabs One Digital 20–2000 Hz Audio interface Excellent
Manipulable filtering range
(piezoelectric sensors)

Amplifies sounds by 100 times; small, with an easily portable design; phones can be used to
record sounds.
Cannot record sounds by itself; requires another device such as a smartphone or an iPad to record
sounds; noise reduction does not reach expectations.

Jabes
Bell mode (20∼200 Hz)

Audio interface Acceptable Unknown
Reasonable price.

Diaphragm mode (200∼500 Hz) Complex operation.
Wide mode (20∼1000 Hz)

Eko Core 20–2000 Hz Bluetooth Excellent ANC friction noise dampening
Easily identifies heart murmurs with Eko’s automated detection software.
Cell phone support required to work; cannot be used independently.

Welch Allyn Elite 20–2000 Hz Bluetooth Excellent Piezoelectric sensors
Comfortable to wear; excellent noise reduction ability.
Not commercially available; complex operation; possesses a single function.

HD Steth
Bell mode (50–200 Hz)

Bluetooth Unknown Unknown
Performs concurrent auscultation and ECG; employs AI to produce superior visualization results.

Dia mode (50–600 Hz) Complex operation.
Lung mode (20–2000 Hz) Expensive.

Note: Advantages and disadvantages of different stethoscopes in terms of their recording frequencies, communication techniques, data losses, filtering techniques and environmental filtering techniques. ANC, active
noise cancellation; ECG, electrocardiogram; LED, light emitting diode; and HZ, hertz.

6

https://www.imrpress.com


Table 3. Intelligent auscultation methods for diagnosing CHD.
Author Algorithm Controls (cardiac patients) Cardiac pathology ACC

Wang et al. [4] ANN 86 (62) An intelligent method for diagnosing paediatric CHD murmurs was developed. 93%

SUN et al. [34] MFCC–HMM 227 (60) A simple and efficient diagnostic system was proposed for diagnosing VSDs. 92.1–99.0%

Gharehbaghi et al. [22] STGNN 50 (22) An automated screening tool for identifying children with isolated bicuspid aortic valves (BAVs) was
developed.

87.4%

Lai et al. [35] Unknown 106 The confirmation of the novel computational algorithm’s high quality and real-world robustness for
the assessment of paediatric murmurs was established.

87%

Aziz et al. [5] SVM 280 (140) The proposed methodology achieved high accuracy in terms of classifying patients with ASDs, pa-
tients with VSDs, and normal subjects.

95.4%

Gómez et al. [36] XGBoost 265 (128) This study investigated the feasibility of using artificial intelligence (AI) for detecting patent ductus
arteriosus (PDA) based on neonatal phonocardiogram (PCG) data.

78%

Son et al. [23] SVM, DNN, KNN 1000 (800) Heart sound signals were classified using multiple features. 97.9%

Zhu et al. [24] MFCC, LPCC 140 (69) The features extracted by using the MFCCmethod were better than those obtained by using the LPCC
approach.

93.02%

Patidar et al. [21] LS-SVM 326 (163) Cardiac sound signals were characterized to diagnose septal defects based on a novel feature set. 99.35%

Chourasia et al. [37] Unknown 25 CHD was identified based on foetal phonocardiography (fPCG) signals. 88%

Ahmad et al. [38] SVM, KNN 283 (108) Heart murmurs were detected and the associated cardiovascular disorders were classified based on
heart sound signals.

92.6%

Babaei et al. [39] ANN 372 (270) Two effective classification strategies have been proposed for the discrimination of heart valve ab-
normalities. The first approach involves the use of neural network training, while the second method
employs statistical averaging on an efficiently decomposed version of clinical samples.

94.42%

Lv et al. [40] CNN 1362 (1149) A high accuracy rate for the detection of abnormal heart sounds was achieved using the AI-AA plat-
form, which enables remote and automatic auscultations. The results also demonstrated excellent
agreement with expert auscultations.

96%

Notes: SVSD, a small VSD; MVSD, a moderate VSD; LVSD, a large VSD; NM, normal; ANN, approximate nearest neighbours; MFCC–HMM,Mel-frequency cepstral coefficient-hidden Markov
model; STGNN, spatial-temporal graph neural network; SVM, support vector machine; XGBoost, extreme gradient boosting; DNN, dynamic neural network; KNN, K-nearest neighbours; LPCC,
linear prediction cepstral coefficient; LS-SVM, least-squares support vector machine; CNN, convolutional neural network; CHD, congenital heart disease; VSD, ventricular septal defect; BAV,
bicuspid aortic valve; ACC, accuracy.
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7.1 Applications in Prenatal Diagnosis
Neonatal screening is crucial for obstetrics, and pre-

natal screening is often performed clinically by complex
methods. The debate over which images of obstetric ultra-
sound should be included in the “routine” examination of
the foetal heart affects the sensitivity of such examinations
[41,42] and detection rates remain low [43]. In addition,
certain lesions, such as transposition of the great arteries
(TGA), can be difficult to detect for physicians without ex-
pertise in CHD [44]. Mellander et al. [45] showed that
in a population of infants requiring cardiac catheterization
or surgery within the first 2 months of life (excluding pa-
tients diagnosed prenatally), 57% of infants with CHD had
been discharged home at 72–120 hours of life. Combin-
ing the above reasons, any method that helps improve the
screening reliability is worth investigating. According to a
recent systematic review of published literature encompass-
ing data from eight centres and 36,237 pregnancies, it was
found that the overall rate of detection of major congeni-
tal anomalies at 11–13 weeks was 29% for cases involving
more than 1000 pregnancies. The pooled cardiac defect de-
tection rate was 17% [46]. Early CHD identification ap-
proaches with heart sound signal processing methods have
been reported [47,48]. Kovács et al. [49] researched pre-
natal heart sounds to diagnose foetal heart disease, and in
2015, they proposed a remote diagnosis method for foetal
congenital heart disease with the help of auscultation. Al-
though the sample sizes in the relevant studies are small,
the diagnosis of murmurs in the foetal life stage with intelli-
gent auscultation methods is a challenging task. Early CHD
screening based on foetal heart sound data has been stud-
ied, but these studies are still scarce, and more research is
needed. These studies are limited to the diagnosis of CHD,
and there is still a gap in the field in terms of prognosis and
severity assessment of CHD.

7.2 Screening for CHD in a Population
When screening a population, traditional methods of

cardiac auscultation alone are often not accurate enough.
According to the literature, the sensitivity and specificity
of auscultation screening for congenital heart disease are
75.0% and 99.0%, respectively [30]. Lillian S.W. Lai et al.
[35] collected heart sound data from 106 patients with CHD
and healthy patients and obtained phonocardiograms for
each case, and used this data to train an intelligent model,
the model achieved a sensitivity of 87%, a specificity of
100%, a positive predictive value of 100%, a negative pre-
dictive value of 90%, and an overall accuracy of 94%.

However, smart stethoscopes that discriminate only
between normal and abnormal sounds have limited clin-
ical applicability. Shuping Sun and colleagues aimed to
diagnose small, medium, and large VSDs using classifica-
tion boundary curves and an elliptical model based on heart
sound feature extraction. The elliptical model classified
normal patients and patients with small, medium, and large

VSDs better than the other five tested models (accuracies
of 99%, 95.5%, 92.1%, and 96.2%, respectively). There are
nuances in the auscultation of heart murmurs in CHD, but it
is clear that AI approaches can obtain improved diagnostic
accuracy for physicians at all experience levels [34].

8. Applications in VHD Diagnosis
VHD is usually a slowly progressive, chronic disease

that may be asymptomatic in its initial stages. The collected
data have repeatedly shown thatmost patients are diagnosed
with advanced-stage disease when they are symptomatic
or have complications (e.g., ejection dysfunction). Several
factors may lead to the delayed diagnosis of VHD, includ-
ing patients’ inadequate knowledge of the condition and
clinicians’ underutilization of cardiac auscultation. Even
with experienced clinicians, the sensitivity (up to 43%) and
specificity (69%) of physician auscultation for the diagnosis
of significant VHD are inadequate [6]. Digital stethoscopes
improve murmur detection by converting sounds into elec-
tronic signals that can be further amplified, filtered and dig-
itized [50,51] (Table 4, Ref. [12,13,22,31,35,52–57]).

Thompson et al. [52] selected 3180 heart sound
recordings from 603 clinic visits from the Johns Hopkins
Cardiac Auscultatory Recording Database. The detection
sensitivity and specificity of patients with pathological mur-
murs were 93% and 81%, respectively, with an accuracy of
88%. However, data that were considered “noisy” or lack-
ing audible murmurs were removed prior to testing, which
artificially improved the performance of the algorithm com-
pared to that achieved in real-world settings [52]. In addi-
tion to diagnosing valvular disease, computer-assisted aus-
cultation appears to be a relevant support tool for detecting
pathological murmurs and appropriately referring patients
for further evaluation (93% referral sensitivity and 79%
specificity) according to Watrous et al. [58]. The perfor-
mance varied according to the deterministic measurements
of the algorithm, patient ages, heart rates, murmur intensi-
ties, and chest recording locations [52]. In a separate in-
vestigation [59], Gharehbaghi et al. [22] employed a com-
bination of two deep learning methods, static and dynamic
time-varying neural networks, to analyse phonocardiogram
(PCG) data. The model was applied to evaluate 140 chil-
dren with congenital heart disease (CHD) and 50 elderly
patients with aortic stenosis (AS), achieving an accuracy of
84.2% and a sensitivity of 82.8%.

Although AI-based cardiac auscultation can help in
the diagnosis of VHD, obesity and diseases that affect aus-
cultation (e.g., chronic lung disease) may affect the quality
of the obtained sound, leading to inaccurate results. How-
ever, because screening large populations is much less ex-
pensive than using echocardiography data, this screening
process reduces the need for trained health professionals
and does not require specialized health care facilities.
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Table 4. Intelligent auscultation in diagnosing VHD.
Author Algorithm Controls (cardiac patients) Cardiac pathology ACC

Thompson et al. [52] Unknown 603 (374) A quantitative and objective evaluation of a heart murmur detection algorithm was conducted using
virtual clinical trials.

88%

Lai et al. [35] Unknown 106 (81) This study evaluated the efficacy of a new algorithm designed to automatically classify murmurs
detected in phonocardiograms (PCGs) acquired from paediatric populations.

94%

Sengur et al. [53] PCA, AIS, KNN 215 (120) A medical decision support system with normal and abnormal classes was developed. 95.9%

Asmare et al. [54] RBF, SVM 251 (124) A machine learning-based automated screening approach for rheumatic heart disease (RHD) was
developed, which enables non-medically trained individuals to use it outside clinical settings.

96.2%

Maragoudakis et al. [13] RF 198 (160) A new ensemble classification approach was proposed, integrating random forests with the Markov
blanket model, for the automated diagnosis of aortic and mitral heart valve diseases, based on low-
cost and easily obtainable heart sound signals.

98.67%

Chorba et al. [31] ResNet24 962 (141) This study aimed to evaluate the efficacy of a deep learning algorithm in detecting heart murmurs and
clinically significant valvular heart diseases (VHDs) using recordings obtained with a commercially
available digital stethoscope platform.

AS: 95.2%, MR: 86.5%

Singh et al. [12] CNN 631 (214) A comprehensive approach comprising a cost-effective digital stethoscope, mobile application and
cloud-based software for audio processing, training and classification was formulated to detect valvu-
lar heart disorders at an early stage. This approach has the potential to be expanded to other ailments
that depend on auscultation as a diagnostic technique, including respiratory disorders.

95%

Comak et al. [55] SVM, ANN 215 (120) A decision support system that aids physicians in evaluating aortic and mitral heart valve disorders
was developed.

94.37%

Gharehbaghi et al. [22] Unknown 45 (15) This study presented a processing method for discriminating between murmurs caused by AS and PS. 93.3%

Maglogiannis et al. [56] SVM 198 (84) A diagnostic system that utilizes support vector machine (SVM) classification of heart sounds to iden-
tify heart valve diseases was proposed. This system is capable of performing a challenging diagnostic
task that is significantly more complex than merely identifying the presence of a heart valve disease.

91.43%

Voigt et al. [57] CNN 200 (100) A deep learning-based auscultation approach was developed that predicted significant ASwith similar
accuracy to that of cardiologists.

95%

Notes: PCA, principal component analysis; AIS, automatic identification system; RBF, radial basis function; RF, random forest; ResNet, residual network; ANN, approximate nearest neighbours; CNN,
convolutional neural network; KNN, K-nearest neighbours; SVM, support vector machine; RHD, rheumatic heart disease; AS, aortic stenosis; PS, pulmonary stenosis; MR, mitral regurgitation; ACC,
accuracy.
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9. Limitations
Some limitations still need to be addressed before the

technology may be used more widely: First, algorithms are
often sensitive to the type of stethoscope used and the qual-
ity and range of data obtained, and the same algorithm of-
ten produces different results for the interpretation of sig-
nals obtained from different stethoscopes [20]. In addi-
tion, AI-based stethoscopy algorithms should be conducted
in collaboration between researchers and medical experts
to avoid research compartmentalization [60]. Most impor-
tantly, intelligent auscultation should ultimately be used for
clinical purposes, yet most of the existing studies have fo-
cused on theoretical algorithms rather than practical appli-
cations [32]. Another important issue is the lack of a com-
mon, authoritative and comprehensive database to compare
algorithms and address data imbalances, as each study is
relatively independent and there are few systematic and ob-
jective evaluations of acquisition environments, parame-
ters and methods [61,62]. The field will also involve the
concept of ethics, as the black-box nature of AI methods
leads to unexplainable algorithms without sufficient theory
to support their widespread use in clinical settings [63], and
one of the biggest challenges is the decreasing frequency of
stethoscope use in actual clinical practice, many imaging
tests having long since replaced acoustically driven stetho-
scopes [32].

10. Future Perspectives
In terms of recent research, AI-based methods have

rarely been applied in clinical settings, and because AI lacks
the human-like ability to think about and explore different
diseases, AI-based approaches cannot yet replace clinicians
and independently complete treatments. The following are
future research directions in this field: PCG data can be ap-
plied when differentiating between innocent and pathologi-
cal murmurs is difficult. In such cases, the use of PCGsmay
increase or decrease the level of suspicion and prompt fur-
ther investigation or reassurance [19]. In settings with lim-
ited access to diagnostic tools, PCG signals may be used to
confirm the clinical presentation of VHD for referral to cen-
tres with more advanced diagnostic capabilities, rather than
for screening purposes [27]. The establishment of high-
quality heart sound databases for multiple cardiac diseases
and the creation of uniform standards for this purpose are
important directions for the future development of this field
[52]. Crucially, establishing a unified heart sound process-
ing scheme and solving the problem of interpretability of
intelligent models is one of the biggest problems in trans-
lating intelligent auscultation into clinical applications.

11. Conclusions
Smart VHD and CHD auscultation has been used ini-

tially in some studies with good results, but currently faces
some problems that need to be solved by conducting more
studies in the future.
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