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Abstract

Background: Using deep learning for disease outcome prediction is an approach that has made large advances in recent years. Notwith-
standing its excellent performance, clinicians are also interested in learning how input affects prediction. Clinical validation of explainable
deep learning models is also as yet unexplored. This study aims to evaluate the performance of Deep SHapley Additive exPlanations
(D-SHAP) model in accurately identifying the diagnosis code associated with the highest mortality risk. Methods: Incidences of at least
one in-hospital cardiac arrest (IHCA) for 168,693 patients as well as 1,569,478 clinical records were extracted from Taiwan’s National
Health Insurance Research Database. We propose a D-SHAP model to provide insights into deep learning model predictions. We trained
a deep learning model to predict the 30-day mortality likelihoods of IHCA patients and used D-SHAP to see how the diagnosis codes
affected the model’s predictions. Physicians were asked to annotate a cardiac arrest dataset and provide expert opinions, which we used
to validate our proposed method. A 1-to-4-point annotation of each record (current decision) along with four previous records (historical
decision) was used to validate the current and historical D-SHAP values. Results: A subset consisting of 402 patients with at least one
cardiac arrest record was randomly selected from the IHCA cohort. The median age was 72 years, with mean and standard deviation
of 69 ± 17 years. Results indicated that D-SHAP can identify the cause of mortality based on the diagnosis codes. The top five most
important diagnosis codes, namely respiratory failure, sepsis, pneumonia, shock, and acute kidney injury were consistent with the physi-
cian’s opinion. Some diagnoses, such as urinary tract infection, showed a discrepancy between D-SHAP and clinical judgment due to the
lower frequency of the disease and its occurrence in combination with other comorbidities. Conclusions: The D-SHAP framework was
found to be an effective tool to explain deep neural networks and identify most of the important diagnoses for predicting patients’ 30-day
mortality. However, physicians should always carefully consider the structure of the original database and underlying pathophysiology.
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1. Introduction

The incidence of in-hospital cardiac arrest (IHCA)
is about 8.5 records for every 1000 admissions [1]. For
IHCA patients, the rate of survival to hospital discharge
is about 39.5%, and only 28.3% of IHCA patients regain
independent or partially independent lives [2]. Previous
studies suggest that detecting adverse signs and symptoms
early and adjusting medical care accordingly has the poten-
tial to improve a patient’s prognosis by properly allocating
healthcare resources and reducing future healthcare needs
[3]. Machine learning methods, especially deep learning
approaches, have been shown to be more effective than
traditional epidemiological studies at uncovering disease
patterns and understanding patient disease trajectories [4–
8]. However, since prior selection of potential risk factors
is required in epidemiological research methods, these ap-
proaches are time consuming and prone to bias if conducted

manually. Although machine-learning approaches provide
promising levels of prediction accuracy, their lack of inter-
pretability has limited their adoption in a clinical setting. It
is important to develop a robust and trustworthy framework
consisting of interpretable methods that can explain why a
certain prediction was made for a given case [9–11]. How-
ever, there are relatively few studies regarding explainable
deep learning models for cardiac arrest prediction. Some
researchers also advocate for a careful and thorough val-
idation of these approaches [12], which has not yet been
undertaken.

In this study, we used a pre-trained Hierarchical Vec-
torizer (HVec) deep learning model to predict the mor-
tality of cardiac arrest patients using data from Taiwan’s
large-scale National Health Insurance Research Database
(NHIRD). This model achieved a 0.711 area under the re-
ceiver operating characteristic (AUROC) score when pre-
dicting patients’ 30-day mortality after each clinical record
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and a 0.808 AUROC score when predicting patients’ 30-
day mortality after IHCA [13]. Based on this, we intro-
duced a deep learning interpretation Deep SHapley Addi-
tive exPlanations (D-SHAP) framework to determine the
correlation between input features and 30-day mortality
probability of IHCA patients. In clinical settings, the di-
agnosis code is a key feature used by physicians to estimate
patient health status. The diagnosis code input feature was
used to check the performance of the D-SHAP framework.
A linear combination method is proposed to aggregate the
SHAP values and thus generate the impact of the diagnosis
code on the mortality probability [14,15]. The physicians’
opinion was introduced as the benchmark to measure the
similarity between the impact calculated from the D-SHAP
framework and human experts’ analyses.

In this study, we aim to evaluate that D-SHAP can cap-
ture the diagnosis code with the highest mortality risk from
a deep neural network and generate a result consistent with
the physician’s diagnosis.

2. Methods
This study was approved by the Institutional Review

Board of National Taiwan University Medical College.

2.1 NHIRD Dataset
Taiwan’s NHIRD is one of the most comprehensive

data sources among all national electronic health record
(EHR) databases around the world. It is a huge database
that includes up to 99.99% of Taiwan’s population [16].
NHIRD is intended for reimbursement purposes, and claim
data includes patients’ medical information such as gender,
age, date of inpatient or outpatient visits, medication, pro-
cedures, discharge status, and the total health cost of each
visit. Details of patients’ medical history and bedside in-
formation, including laboratory test results, vital signs, and
physical examination, are not recorded in the NHIRD.

2.2 Cardiac Arrest Dataset
In this study, a sufficiently large subsample of this

database has been utilized to train, test, validate, and inter-
pret our model. Patients who had at least one IHCA event
during the study period (from January 1, 2002 to Decem-
ber 31, 2010) were included in the analysis. International
Classification of Disease, 9th Revision (ICD-9) was used
in the dataset. The following ICD-9 codes have been used
in this study for identifying the ICHA cohort: procedure
codes 99.60 (cardiopulmonary resuscitation, not otherwise
specified) and 99.63 (closed-chest cardiac massage) [17].
Extract, Transform, & Load (ETL) was performed on the
raw dataset to prepare an organized database. To improve
the raw data organizationally, the database was regrouped
into three major categories: insurer, person, and caregiver.
Meanwhile, vocabulary tables were constructed based on
extracted concepts used in the raw data [13].

The resulting database consists of 4,622,079 clinical
records, both inpatient and outpatient, from 168,693 people
(mean and standard deviation of records per person 9.30
± 10.90) who have experienced at least one IHCA over a
nine-year period. A total of 3,052,601 dental, traditional
medicine, and local clinic records were excluded from the
analysis. These records were usually repetitive and not par-
ticularly relevant to critical illness, so they would simply
have added noise to the machine learning models. The re-
maining 1,569,478 clinical records were included in the fi-
nal analysis.

2.3 Deep SHapley Additive exPlanations (D-SHAP) Deep
Learning Models

Deep SHapley Additive exPlanations (D-SHAP) is a
method that can provide deep learning model explanation
using linear approximation and derivative chain rule for
each input and output, referred to as local input/output [17].
The methodology and calculation details were provided in
the Supplementary Material for reference and further ex-
amination. The explainable deep learning model will pro-
vide each clinical record a continuous D-SHAP value for
predicting the probability of 30-day mortality.

For the diagnosis codes in each record, current and his-
torical D-SHAP impacts are analyzed from the model’s per-
spective to determine the importance of each diagnosis code
(Fig. 1). The current D-SHAP value is defined by checking
the diagnosis codes of the current event, providing a scale to
measure the likelihood of 30-day mortality for the individ-
ual. The historical D-SHAP value is defined by checking
the diagnosis codes of all previous events and provides a
scale to measure the likelihood of 30-day mortality. In this
experiment, the high/low SHAP impact segmentation cri-
terion is set according to the results. In principle, records
with SHAP prediction value ≥0.25 are considered as high
SHAP impact, and these diagnosis codes can predict 30-day
mortality. In contrast, records with SHAP prediction value
≤0.10 are considered as low SHAP impact; these diagnosis
codes can negatively predict 30-day mortality.

In this study, the SHAP value is validated against a
physician’s decision to determine the consistency between
the SHAP value and human knowledge.

2.4 Validation Dataset by Clinical Judgment

A subset of 402 patients with IHCA records randomly
selected from 168,693 people in our NHIRD dataset was
used to compare differences among D-SHAPE models as
well as decisions made by human physicians. The physi-
cians’ opinions served as the reference point for assessing
the congruity between the D-SHAP framework and human
experts’ analyses. For each patient, the IHCA records with
30-day mortality and four consecutive historical records
prior to that record were used for analysis. Each visit
was given a current decision point and a historical decision
point. Physicianswere asked to provide opinions and assign
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Fig. 1. Aggregating historical diagnosis SHapley Additive exPlanations (SHAP) versus current diagnosis SHAP.

a scale of 1-to-4-point denoting the possibilities of 30-day
mortality (1 denotes high probability of 30-day mortality, 2
denotes medium probability, 3 denotes low probability, and
4 denotes very low probability).

In correspondence with the SHAP algorithm (Fig. 1),
current decision points were denoted after physicians
judged all diagnoses within an individual visit. Historical
decision points were denoted for each visit by considering
the diagnosis of that visit and the previous four records to-
gether. Therefore, each patient would be designated with 5
current decision points and 4 historical decision points. D-
SHAP impact values of diagnosis code greater than 0.25 are
considered to indicate high-impact records corresponding
to scale 1 (high probability of 30-day mortality) in clinical
judgment by physicians. D-SHAP impact values of diagno-
sis code less than 0.10 are considered to indicate low-impact
records corresponding to scale 4 (very low probability of
30-day mortality).

In total, eight physicians from National Taiwan Uni-
versity Hospital participated in this study, and each visit
was evaluated by two physicians. If the difference in anno-
tations by the two physicians was greater than 1, the final
decision was made by the authors (CYC and CHH). The
physicians were blind to the model performance and pa-
tients’ outcomes when submitting their judgments.

2.5 Comparison of D-SHAP Model with Clinical Judgment
In order to match the clinical judgment against the D-

SHAP model and avoid the misleading of some rare di-
agnoses, some statistics for the diagnosis codes are deter-
mined as follows:

• Count-high: total counts of the diagnosis codes ap-
pear in scale 1 clinical records.

• Count-low: total counts of the diagnosis codes ap-
pear in scale 4 clinical records.

• High-ratio: count-high divided by the total records
with scale 1.

• Low-ratio: count-low divided by the total records
with scale 4.

Finally, we assign each diagnosis code an importance
value to describe its severity in terms of its relationship to
mortality:

• Importance: the difference between high-ratio and
low-ratio.

The importance ranking of each diagnosis according
to physicians’ opinion was set as benchmark. This bench-
mark was then compared with the importance ranking gen-
erated by the D-SHAP framework.

3. Results
3.1 Baseline Characteristics of IHCA Cohort

CONSORT diagram of the study cohort and the val-
idation data set was illustrated in Fig. 2. Among these
1,569,478 clinical records, there are 173,345 IHCA records
(11.04% of the total); on average, each subject in the IHCA
cohort has 1.02 IHCA records. The age of individuals in
the dataset ranges from 0 to 118 years (mean and stan-
dard deviation 68.66 ± 18.96 years), including 104,691 fe-
males and 64,002 males. 164,322 subjects (97.4%) have
had cardiac arrest only once, 4174 (2.4%) have had car-
diac arrest twice, and only 197 (0.2%) have had cardiac ar-
rest more than twice. We observed 87,311 death records (a
51.75%mortality rate). Of these 87,311 individuals, 82,225
passed away during their first cardiac arrest hospitalization
(94.17%). For validation and interpretation of model per-

3

https://www.imrpress.com


Fig. 2. CONSORT diagram of the study cohort and the validation data set. IHCA, in-hospital cardiac arrest; D-SHAP, Deep SHapley
Additive exPlanations.

formance, a set of physician’s annotations are needed. To
this end, a subsample of the final dataset was annotated by
physicians and utilized in validation and interpretation.

3.2 Physician Annotation Analysis

Among the subset of 402 patients in the validation
dataset, the median age was 72 years with mean and stan-
dard deviation of 69 ± 17 years. The dataset consists of
more males than females (female to male ratio = 0.37). Di-
abetes mellitus, acute respiratory failure, and pneumonia
were the most frequent diagnosis codes in these individu-
als’ current and historical health records, as illustrated in
Table 1. In Table 2, the top ten most frequent diagnosis
codes were compared for individuals with a 30-day mortal-
ity versus those without. Although diabetes mellitus was
the most prevalent disease across the whole cohort, acute
respiratory failure was most frequent for those who had a
30-day mortality incident in their records.

The top ten most important diagnosis codes for both
current and historical decisions are shown in Tables 3,4.

From these tables we can see that acute respiratory failure,
pneumonia, sepsis, shock, unspecified, acute kidney injury,
congestive heart failure, and aspiration pneumonia appear
in both current and historical top ten important diseases.

3.3 D-SHAP Analysis

To align the results with Tables 3,4, the high/low ra-
tio and importance of each diagnosis code by current and
historical D-SHAP models are presented in Tables 5,6, re-
spectively. In Tables 5,6, the Rank column represents the
importance of these diagnosis codes in order of physicians’
judgment as shown in Tables 3,4.

We see that the top-five diagnosis codes in both Ta-
bles 5,6 are consistent with the physician’s decision in Ta-
bles 3,4 despite the ordering being slightly different and the
importance being more significant than the other diagnosis
codes. Most of the important diagnosis codes found by D-
SHAP are also considered important diagnoses by physi-
cians. It is interesting that the diagnosis code for urinary
tract infection shows up as the sixth most important diag-
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Table 1. Top ten most frequent diagnosis codes within individual health records in the validation dataset.
Diagnosis code Frequency (% of all diagnosis records)

Diabetes mellitus 4.93
Acute respiratory failure 4.81
Pneumonia 4.54
Urinary tract infection 4.19
Sepsis 2.59
Congestive heart failure 2.52
Hypertension 2.40
Chronic renal disease 2.01
Shock, unspecified 1.50
Chronic lung disease 1.50

Table 2. Comparison of the top ten most frequent diagnosis codes for individuals with and without 30-day mortality records in
the validation dataset.

Diagnosis code with 30-day mortality Frequency (% of all
diagnosis records)

Diagnosis code without 30-day mortality Frequency (% of all
diagnosis records)

Acute respiratory failure 2.73 Diabetes mellitus 4.68
Sepsis 1.85 Urinary tract infection 3.90
Pneumonia 1.85 Pneumonia 3.81
Shock, unspecified 1.40 Acute respiratory failure 3.73
Urinary tract infection 0.73 Congestive heart failure 2.30
Diabetes mellitus 0.63 Hypertension 2.29
Chronic renal disease 0.59 Sepsis 1.86
Acute kidney injury 0.59 Chronic renal failure 1.78
Congestive heart failure 0.56 Chronic lung disease 1.45
Aspiration pneumonia 0.38 Acute exacerbation of chronic obstructive lung disease 1.34

nosis for current D-SHAP impact but only the 365th most
important based on the physician’s current decision. Uri-
nary tract infection is a common disease which is not always
life threatening. However, we notice that in our dataset
there are several co-prevalent comorbidities with urinary
tract infection that can lead to mortality, which misleads our
D-SHAP analysis process. The top-five comorbidities by
prevalence in patients with urinary tract infection diagnosis
included pneumonia (23.36%), diabetes mellitus (20.72%),
acute respiratory failure (19.41%), sepsis (11.51%), and hy-
pertension (8.55%).

4. Discussion

In this paper, we proposed a D-SHAP machine learn-
ing model that can be used to explain deep neural network
modeling. The electronic health records of an IHCA co-
hort were investigated using our D-SHAP framework to
find the most important diagnosis codes leading to mor-
tality. After comparison with physicians’ annotations, we
found that most of the important diagnosis codes that could
lead to mortality can be captured by our D-SHAP frame-
work. One of the diagnoses, urinary tract infection, showed
a high discrepancy between our D-SHAP model and clin-
ical judgment. Urinary tract infection is a relatively com-
mon disease leading to admission, especially in seniors or

patients with multiple comorbidities [18]. We assume that
the high prevalence of urinary tract infection in our dataset
with its high frequency of comorbidities with dangerous di-
agnoses including pneumonia, acute respiratory failure, and
sepsis might mislead the machine learning process. Results
show that our framework can determine some vital diagno-
sis codes that cannot be found by conventional clinical judg-
ment. However, physicians should always carefully evalu-
ate the results of machine learning and consider underlying
pathophysiological mechanisms.

Along with the recent explosive development of ma-
chine learning in medicine, several arguments about its
utility in clinical practice have manifested, especially re-
garding black-box and overfitting issues [19–23]. With
improvements in computer science, explainable machine
learning models have been widely used recently to address
the drawbacks of traditional machine learning models; they
have been used in several areas of medicine [5,24–29], and
they also provide prediction algorithms for use by clinical
physicians [30]. These studies proposed several models
with high predictive values for critical illness. They also
proposed several predictive factors using explainable deep
learning models such as SHAP and locally interpretable
model-agnostic explanations (LIME), yielding insight into
the mechanisms of these models. However, how reasonable
these generated factors are is still in question. In addition to
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Table 3. Diagnosis code importance based on current decision by physicians; top ten most important diagnosis codes leading to
30-day mortality.
Current decision

Diagnosis Count-high Count-low High-ratio Low-ratio Importance

Acute respiratory failure 199 0 59.58% 0.00% 59.58%
Pneumonia 105 29 31.44% 6.40% 25.04%
Sepsis 86 4 25.75% 0.88% 24.87%
Shock, unspecified 66 0 19.76% 0.00% 19.76%
Acute kidney injury 32 1 9.58% 0.22% 9.36%
Congestive heart failure 37 14 11.08% 3.09% 7.99%
Cardiac arrest 26 0 7.78% 0.00% 7.78%
Aspiration pneumonia 21 3 6.29% 0.66% 5.63%
Cardiogenic shock 17 0 5.09% 0.00% 5.09%
Acute myocardial infarction 17 0 5.09% 0.00% 5.09%

Table 4. Diagnosis code importance based on historical decisions by physicians; top ten most important diagnosis codes leading
to 30-day mortality.
Historical decision

Diagnosis Count-high Count-low High-ratio Low-ratio Importance

Acute respiratory failure 240 0 49.69% 0.00% 49.69%
Pneumonia 143 6 29.61% 4.44% 25.16%
Sepsis 95 1 19.67% 0.74% 18.93%
Shock, unspecified 78 0 16.15% 0.00% 16.15%
Acute kidney injury 42 0 8.70% 0.00% 8.70%
Congestive heart failure 55 5 11.39% 3.70% 7.68%
Acute exacerbation of chronic obstructive lung disease 35 0 7.25% 0.00% 7.25%
Chronic renal disease 44 4 9.11% 2.96% 6.15%
Chronic lung disease 37 3 7.66% 2.22% 5.44%
Aspiration pneumonia 26 0 5.38% 0.00% 5.38%

post-hoc judgment based on clinical rationales, which carry
the risk of confirmation bias, further double-blind studies
are needed for more rigorous validation [12].

In this study, not only did we propose a deep learning
interpretation framework for predicting mortality by EHRs
of NHIRD, but we also performed a prospective validation
against the judgment of clinical physicians. To the best
of our knowledge, this is the first study using a prospec-
tive method to validate an explainable deep learning model.
We used diagnosis for the index as an important feature of
EMRs that covers patients’ overall status as well as physi-
cians’ judgment. To correspond with D-SHAP values, we
innovated a 1–4 score for each visit by clinical judgment. In
this experiment, the prevalence of each diagnosis is a key is-
sue. Some diagnoses seldom appeared and had a very small
sample size, so we cannot solely calculate the mean score
of each diagnosis. Also, some diagnoses are strong predic-
tive factors for 30-day mortality while other diagnoses are
strong protective factors. Therefore, we propose measur-
ing the importance of a diagnosis by calculating the differ-
ence in probability between high and low scores. However,
the prevalence of diagnoses within the dataset was still a
major confounding factor. In addition to those diagnoses

with higher risk, those with higher prevalence will also have
higher ranking. For example, cardiac arrest should be a
stronger predictor of mortality than any other. However,
due to the relatively low frequency of cardiac arrest featur-
ing as the diagnosis, the importance of this diagnosis scored
lower than other more common diseases such as pneumo-
nia or respiratory failure. Also, frequently occurring dis-
eases such as urinary tract infections are expected to have
higher rankings, especially those with more co-prevalence
with other severe comorbidities. Therefore, the ranking in
our study did not emphasize the order of severity but only
indicated those diagnoses that should bear greater consid-
eration. This experiment also illustrated the point that the
end users of machine learning models should always care-
fully evaluate the results and consider the structure of the
original database.

This study has several implications. We found that an
explainable deep learning model can determine diagnosis
with clinical significance for a complicated database such
as NHIRD. This model can be utilized as an early warning
system for patients who are at risk of mortality according
to recent EHRs. Patients with a high risk of mortality could
be identified and re-evaluated at each clinical visit. With an
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Table 5. Diagnosis code importance based on current D-SHAP; top ten most important diagnosis codes leading to 30-day
mortality.

Current D-SHAP

Diagnosis High-ratio Low-ratio Importance Rank

Acute respiratory failure 62.41% 1.14% 61.27% 1
Sepsis 36.84% 0.76% 36.08% 3
Pneumonia 42.11% 7.20% 34.91% 2
Shock, unspecified 32.33% 0.00% 32.33% 4
Acute kidney injury 14.29% 0.38% 13.91% 5
Urinary tract infection 16.54% 10.61% 5.94% 365
Hypoxic encephalopathy 5.26% 0.38% 4.88% 14
Hypertension 4.51% 1.14% 3.37% 16
Gastrointestinal bleeding 6.02% 2.65% 3.36% 12
Cardiac arrest 3.01% 0.00% 3.01% 11
D-SHAP, Deep SHapley Additive exPlanations.

Table 6. Diagnosis code importance based on historical D-SHAP; top ten most important diagnosis codes leading to 30-day
mortality.

Historical D-SHAP

Diagnosis High-ratio Low-ratio Importance Rank

Acute respiratory failure 62.50% 0.79% 61.71% 1
Sepsis 50.00% 0.79% 49.21% 3
Shock, unspecified 47.73% 0.00% 47.73% 4
Pneumonia 34.09% 8.66% 25.43% 2
Acute kidney injury 18.18% 0.26% 17.92% 5
Cardiogenic shock 9.09% 0.00% 9.09% 15
Myocardial infarction 6.82% 0.00% 6.82% 32
Cardiac arrest 6.82% 0.26% 6.56% 11
Gastrointestinal bleeding 10.23% 4.46% 5.77% 12
Aspiration pneumonia 7.95% 2.36% 5.59% 10
D-SHAP, Deep SHapley Additive exPlanations.

explainable deep learning model, several diagnoses or risk
factors can be proposed for helping physicians to make the
most effective clinical decisions. We consider the present
study as a preliminary study for future work and demon-
strate that our model can be an effective tool with reason-
able explainability. In Taiwan, the NHI database contains
over 99% of the population’s medical information for insur-
ance purposes. In the future, we hope to establish an alarm
system based on NHIRD by connecting hospital EHRs and
deep learning software within NHIRD, which can be uni-
versally applied to Taiwan’s population for predicting se-
vere, high-risk medical conditions such as cardiac arrest
[31–35].

This study had several limitations. First, the IHCA
cohort was retrospectively collected using NHIRD. These
patients were usually diagnosed with critical illnesses and
multiple comorbidities during the study period. The impli-
cations of extending this model to the general population
or other datasets are unknown. Second, only the diagno-
sis code was used in this study due to study design and the
complexity of NHIRD. Explainability of the whole model

was not evaluated or validated by this study. Third, as men-
tioned above, the prevalence of each diagnosis would have
an impact on its calculated importance. Since NHIRD is
used for reimbursement purposes, diagnoses other than pri-
mary diagnosis for admission were not always recorded by
physicians. The gap between NHIRD records and clini-
cal diagnosis should be considered. Fourth, the calculation
formula for the importance of each diagnosis was designed
solely for our validation experiment. Due to the lack of sim-
ilar studies in the literature, the methodology used in this
study should be applied with caution and further validation
is needed. Finally, further studies are needed to evaluate
the utility of explainable deep learningmodels in real-world
medical applications and thus determine whether this sys-
tem can improve patients’ outcomes.

5. Conclusions
In this study, the D-SHAP framework was found to be

an effective tool for explaining deep neural networks in the
prediction of patients’ 30-day mortality. Most of the im-
portant diagnosis codes that could lead to mortality, includ-
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ing respiratory failure, sepsis, pneumonia, shock, and acute
kidney injury, can be captured by our D-SHAP framework.
However, physicians should always carefully evaluate the
results of machine learning, taking into account underlying
pathophysiological mechanisms.
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