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Abstract

The integration of artificial intelligence (AI) into clinical management of aortic stenosis (AS) has redefined our approach to the assess-
ment and management of this heterogenous valvular heart disease (VHD). While the large-scale early detection of valvular conditions
is limited by socioeconomic constraints, AI offers a cost-effective alternative solution for screening by utilizing conventional tools, in-
cluding electrocardiograms and community-level auscultations, thereby facilitating early detection, prevention, and treatment of AS.
Furthermore, AI sheds light on the varied nature of AS, once considered a uniform condition, allowing for more nuanced, data-driven
risk assessments and treatment plans. This presents an opportunity to re-evaluate the complexity of AS and to refine treatment using
data-driven risk stratification beyond traditional guidelines. AI can be used to support treatment decisions including device selection,
procedural techniques, and follow-up surveillance of transcatheter aortic valve replacement (TAVR) in a reproducible manner. While
recognizing notable AI achievements, it is important to remember that AI applications in AS still require collaboration with human ex-
pertise due to potential limitations such as its susceptibility to bias, and the critical nature of healthcare. This synergy underpins our
optimistic view of AI’s promising role in the AS clinical pathway.
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1. Introduction
Aortic stenosis (AS) is the most prevalent valvular

heart disease (VHD) in the western world [1], often man-
ifesting as degenerative or calcific, it is characterized by
progressive narrowing of the aortic valve. Without proper
intervention, severe AS carries a high risk of mortality [2].
The global impact of AS is escalating, driven by an age-
ing population and the age-related progression of this con-
dition, as suggested by multiple studies [1,3–5]. This un-
derscores the urgent need to improve global management
of AS.

Recent breakthroughs in artificial intelligence (AI)
from medical fields including cancer biology and genomics
[6], have catalyzed enthusiasm for its application to VHD,
with a particular emphasis on AS. This is summarized
in the Graphical Abstract. Considerable evidence sug-
gests that AI use can enhance the evaluation and man-
agement of AS patients at each stage of care. AI fa-
cilitates comprehensive screening, spanning age groups
from children at risk for congenital VHD or rheumatic
fever, to seniors with degenerative AS [7]. Moreover, AI
aids in precise diagnosis and improved risk stratification—
isolating true high-risk cases among patients labeled with
“severe” AS—as well as optimizing treatment options, in-
cluding pre-procedural evaluations for transcatheter aortic

valve replacement (TAVR) [8,9]. AI achieves these out-
comes by synthesizing available patient data including elec-
tronic health records (HER), genetic markers, auscultation
findings, electrocardiograms (ECG), echocardiograms, and
imaging from computed tomography (CT) or cardiovascu-
lar magnetic resonance (CMR).

This article provides a comprehensive review of recent
advances and emerging concepts of AI application to AS
(Table 1, Ref. [7,10–25]), with a focus on the integration of
AI into pre-clinical and routine clinical management of AS.
The final section of this article will address current limita-
tions in AI-AS research methodology, and propose avenues
for future research directions for this multifaceted disease
with the assistance of AI.

2. Artificial Intelligence in the Clinical
Pathway Workflow for Aortic Stenosis
2.1 Overview

The application of AI for AS has attracted significant
attention, particularly in relation to optimizing echocardio-
graphic assessments. AI application has enabled the full au-
tomation of primary AS evaluation [12,26]. AI algorithms
successfully merge echocardiographic data with pertinent
clinical information, allowing for the identification of dis-
tinct sub-phenotypes among patients with clinically severe
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Table 1. Artificial intelligence applications in clinical pathway of aortic stenosis.
AI in AS AI techniques Description Examples

Screening
Natural language processing Analyzes and understands human language - Analysis of ECG and medical history from elec-

tronic health records system [10,11].

Supervised machine learning Learns patterns from labeled data - Integration of patient data for risk
score/stratification of AS [16].

Diagnosis
&treatment

Computer vision Utilizes visual data for analysis - Automated echocardiogram analysis for valvular
disease diagnosis [12].

Image segmentation Identifies and outlines structures in images - Generate 3D reconstruction of aortic root based
on CT [13,14,21,22] and echocardiography [7,15,
20,23] or other imaging modalities.

Unsupervised machine learning Discovers patterns without labeled data - Phenotyping studies based on data patterns [17–
19].

Computational fluid dynamics Simulates fluid behavior for interventions - Simulation for transcatheter aortic valve replace-
ment [24,25].

AI, artificial intelligence; AS, aortic stenosis; ECG, electrocardiograms; 3D, 3-dimensional; CT, computed tomography.

AS, a task difficult to achieve through conventional statis-
tical methods or current AS knowledge [17,27]. Another
potential application in AS management that has been met
with considerable enthusiasm is the use of AI to assist or au-
tomate the planning process for TAVR [24,28]. This review
will be structured chronologically, with a comprehensive
examination of AI for screening, diagnosis, and treatment
(mainly TAVR) within the general context of AS manage-
ment (Graphical Abstract).

2.2 Massive Screening Made Possible: Primary
Prevention

While AS is often fatal once symptoms develop, most
AS patients remain under-diagnosed until the late stage
[2,29]. Prior to the onset of symptoms, patients undergo
a prolonged subclinical period defined as aortic sclerosis
[30]. Early detection is critical, as timely intervention sig-
nificantly improves the prognosis and outcomes in patients
experiencing chronic AS onset [31]. Healthcare and bud-
getary limits restrict the ability of current clinical diagnos-
tic tools such as echocardiograms to provide large-scale
screening in high-risk populations [32,33]. However, a
newly-developed and wearable ultrasound imager [34] en-
ables continuous, real-time cardiac assessments, highlight-
ing the benefit of adopting novel technologies from other
fields.

ECG technology is likely to be among the first med-
ical instruments to adopt AI, starting with rule-based clin-
ical decision-making [35,36]. The interpretation of ECG
has evolved thanks to exciting developments in computer
vision (CV) and associated technologies, including sig-
nals processing and wavelet analysis [37,38]. AI-assisted
ECG interpretation has already made substantial progress
in other domains of cardiology, showing excellent perfor-
mance for the detection and classification of arrhythmia
[39], ST changes [40] and additional cardiac abnormali-

ties. The recent development of rECHOmmend, an ECG-
based screening tool from Ulloa-Cerna et al. [41] offers a
new option for population screening. The machine learn-
ing system integrates clinical factors and laboratory mea-
surements with structured ECG data to simulate physician
decision-making. It identifies patients who are at high risk
of structural heart disease, flagging them for further ECG
evaluation. Validation studies have confirmed the accuracy
and reliability of clinical referrals made by rECHOmmend
[41]. Elias et al. [42] reported an alternative deep learn-
ing prediction model trained exclusively on ECG figures
and focused on the screening of left-sided VHD. Another
study revealed that individuals flagged as “false-positives”
by AI had double the risk of developing moderate or severe
AS during 15-year period compared to the “true-negative”
population [8]. This demonstrates the possibility of using
AI-ECG to predict the onset and progression of AS.

The generalizability of AI models improves with in-
creased amounts of training data [43,44]. The “feder-
ated learning” technique involves training of the model
with multiple datasets acquired from different institutions
without data merging. This has significantly enhanced
the performance of unseen datasets [43]. In conclu-
sion, AI-empowered ECG interpretation shows consider-
able promise for the screening of undiagnosed AS patients
in an aging society.

Another possible AI-assisted screening tool for AS is
AI-auscultation. In recent decades, the dependency on aus-
cultation has declined due to advances in cardiac imaging
and physician proficiency with this technique [8]. Further-
more, less than half of patients with moderate or severe
AS exhibit systolic murmurs [45]. Nevertheless, auscul-
tation remains widespread due to its portability and cost-
effectiveness [46], making it suitable for application in non-
clinical settings such as community screening. The acqui-
sition of heart sounds for AI models is comprised of two
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major components: the digital stethoscope, and the phono-
cardiogram (PCG), which visualizes the waveform of heart
acoustics [47]. Over the years, substantial effort has been
made to classify different heart sounds into normal or ab-
normal groups [48,49]. More recent studies have attempted
to discriminate between different valvular conditions by
recognizing specific murmurs, such as the systolic mur-
murs of AS [50–53]. In a noteworthy animal experiment,
Dargam et al. [54] developed an ensemble-learning-based
algorithm that uses S2 sounds extracted from PCGs to pre-
dict aortic valve calcification. This has major clinical sig-
nificance due to the poor prognosis of patients with calci-
fied AS [55]. The encouraging progress of AI-empowered
auscultation also has potential as a screening modality for
patients with severe AS, especially in the community set-
ting.

The integration and utilization of reports such as ECG,
echocardiography, and CMR stored in Electronic Health
Record (EHR) systems presents a significant challenge due
to the unstructured nature of these records [56]. Natu-
ral Language Processing (NLP) is an integrated algorithm
that enables computers to comprehend texts and speeches
[57,58]. NLP holds promise for identifying AS patients
and extracting relevant clinical information from large,
non-organized EHR databases [10,11,59,60]. Despite this
promise, concerns remain regarding the accuracy, validity,
and applicability of applying NLP models across datasets
from different institutions [61]. Although NLP can effec-
tively learn nuanced linguistic expressions from diverse
document structures at one facility, the model might not
correctly interpret data from other institutions [62]. How-
ever, recent studies indicate some success in transferring
NLP models between multiple facilities, alleviating con-
cerns over their portability [59,63–65]. The application of
NLP to EHR systems represents a considerable advance
in facilitating more effective population management on a
larger scale.

In addition, simultaneous screening for AS during ex-
amination for other conditions such as lung low-dose CT
and CT for breast cancer is also possible, thus providing
even greater scope for AS screening [66–68]. By exploiting
all available pre-clinical resources including multimodal
imaging, clinical results and biochemical data, AI may fa-
cilitate patient referral for advanced examination in a non-
invasive and cost-effective manner. Not only can it over-
come limitations in expertise and human error by ensuring
consistency of advice, it can also allow large cohorts to have
rapid interaction with physicians.

2.3 Bridging of Image Assessment with Diagnosis

In the clinical setting, AS diagnosis relies primarily
on patient symptoms and severity, as indicated by imaging
assessments including valvular stenosis and the function of
up-stream or down-stream structures. Advances in AI, par-
ticularly within the field of CV, have allowed significant

progress in bridging image assessment with clinical diagno-
sis of the disease. Two notable studies have developed fully
automated workflows for AS diagnosis using color Doppler
ECG images [12] and videos [26]. The process begins with
view identification, progresses through structure segmenta-
tion and measurement, quantification, and culminates with
disease classification [12]. Utilizing this workflow, Yang et
al. [26] developed a diagnostic tool for VHD that achieved
an impressive area under the curve (AUC) value of 0.97
for AS diagnosis. Additionally, the AI-driven echocardio-
graphy model provided precise predictions for the accurate
peak aortic jet velocity and transvalvularmean pressure gra-
dient [26]. While view identification allows AI to quickly
identify key images suggesting valvular abnormalities [9],
existing research has largely concentrated on other struc-
tural heart diseases such as mitral and tricuspid regurgita-
tion [69–71], rather than AS.

Automated provides precise outlines of key anatomi-
cal features such as the aortic root and left ventricle from
various imaging modalities. This forms the basis for subse-
quent AI analysis leading to personalized simulations that
aid in treatment planning and outcome prediction. Over the
past decade, considerable efforts have been made to seg-
ment and reconstruct the aortic root using various imaging
modalities in order to approach the “ground truth” [13,14,
72,73], which in most cases is the underlying anatomical
structure manually delineated by clinicians. Using unla-
beledMRI sequences, Fries et al. [74] identifiedmalformed
aortic valves and linked specific malformations to elevated
risk of future cardiac events. Segmentation of the aortic
valve and detection of anatomic malformations are made
possible in real-time by echocardiography [15]. Bhuva et
al. [75] developed an AI model to retroactively analyze
the segmented left ventricle (LV) following aortic valve re-
placement (AVR). Using CMR data from 116 symptomatic
AS patients, the AI model exhibited superior sensitivity
in detecting regional variations in LV wall thickness when
compared to traditional methods, a finding corroborated by
Duffy et al. [76].

Automatic analysis of the AS condition encompasses
both morphological and functional assessments. Morpho-
logical assessments, often used for pre-TAVR evaluation,
leverage neural networks to analyze the volume and Agat-
ston score of aortic root calcifications based on segmen-
tations [77]. These assessments are viable even in low-
dose CT for lung screening [68] and auscultation [54]. su-
pervised AI models can also predict the aortic valve area
that supports prosthesis sizing, thereby minimizing inter-
observer variability [16]. Functional assessment of AS usu-
ally refers to valvular hemodynamics and extra-aortic valve
cardiac damage, including left ventricular ejection frac-
tion (LVEF) [78–80] and 4-dimensional flow quantification
[81,82]. These AI-empowered automations are now bridg-
ing AS assessment with clinical diagnosis under the current
guidelines and clinical criteria [32].
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Despite the workflow proposed by Zhang et al. [12],
AI-assisted diagnosis of AS is not a logical decision of
upstream measurements resembling a clinical decision.
Instead of a rule-based diagnostic approach, AI models
mostly identify AS through pattern recognition in the fea-
tures extracted from either imaging or segmentation [16].
This is supervised by pre-defined labels or annotations (e.g.,
AS or healthy) provided by clinicians (Fig. 1A, Ref. [17–
19,30,83]). CV-based AS detection models can also use
segmentations derived from other kinds of images, such as
continuous waveform recorded by non-invasive, wearable
inertial sensors [84], thereby extending the possible appli-
cation of AI for the assessment of AS conditions. A seam-
less computational modeling framework based on CV al-
gorithms holds great promise for achieving higher repro-
ducibility in aortic valve analysis, with less intra- and inter-
observer variability [81,85], thus bridging the assessment
and diagnosis of AS.

2.4 Precise Diagnosis: Insights from Phenotypic Studies

The diagnosis of AS severity is the basis for further de-
cisions regarding treatment. Conventional phenotyping of
AS patients has been difficult and limited, due to its depen-
dence on a small number of echocardiography findings in-
cluding jet velocity, mean gradient, and LVEF [32]. Given
the heterogeneity of AS, existing guidelines relying on a
limited set of predictors can yield inconsistent assessments
of AS severity. This leads to diagnostic ambiguity in cases
like low-flow low-gradient AS and borderline AS, resulting
in indecision regarding the appropriate treatment. While
considerable effort has gone into developing statistical pre-
diction models to delineate AS patient phenotypes and clin-
ical outcomes [86], these models have achieved only mod-
est success in risk stratification. Machine learning (ML) of-
fers a way to overcome this limitation. ML-based models
can unearth “hidden” variables within diverse data sources
that are not readily identifiable using traditional statistical
methods or current guidelines [87]. Both supervised ML
and unsupervised cluster analysis are frequently used for
this purpose [88] (Fig. 1).

Supervised ML operates by iteratively learning the in-
tricate relationships between input variables and their cor-
responding outcomes. For instance, a study incorporated
90 clinical variables, LVEF and 57 additional echocardio-
graphic parameters as inputs for supervisedMLmodel [89].
Initially, the model estimates patient outcomes (e.g., sur-
vival likelihood) based on randomly assigned weights for
each input parameter (e.g., LVEF). The discrepancy be-
tween the estimated and actual outcomes, referred to as
“loss”, drives the model’s learning process. It refines the
weightings of individual variables to minimize this “loss”
(Fig. 1A). Over time, the weight for each variable becomes
tailored to the learned correlation or causality of the vari-
able with outcome (e.g., LVEF is assumed to be important
for AS and so its weighting increases). The ML model can

thus provide more accurate prediction of clinical outcome
for unseen patients than a statistical prediction model [89].
Several studies have tried to achieve risk stratification of
AS by applying different ML algorithms, either through
the prediction of clinical outcomes such as referral for
AVR [90], cardiac events [91], or mortality [16,89,90,92].
Through this process several outcome predictors have been
identified [89,91–93].

Unlike supervised ML, unsupervised ML represented
by cluster analysis operates without the need for prede-
fined labels or annotations. Unsupervised clustering meth-
ods have revealed meaningful phenotypes within AS pa-
tient groups based on similarities rather than differences,
and without the use of pre-defined diagnostic criteria or as-
sumptions (Fig. 1B). Lachmann et al. [17] used unsuper-
vised cluster analysis to group patients according to simi-
larities in their baseline characteristics. These features were
obtained from patients undergoing right heart catheteriza-
tion and echocardiography prior to TAVR, irrespective of
the severity of their clinically diagnosed AS. Each cluster
showed distinctive clinical characteristics. For example,
patients in cluster 3 displayed left and right heart dysfunc-
tion with pulmonary hypertension. In contrast, cluster 1
patients presented with regular cardiac function. The unsu-
pervised ML model generated strong outcome predictions,
with 2-year survival rates after TAVR of 90.6% for cluster
1 and 77.3% for cluster 2 [17]. Lachmann et al. [94] found
that the discriminative power of cluster analysis was based
on identifying the inherent yet obscure irreversibility of car-
diac dysfunction (and therefore poor prognosis), rather than
the obvious characteristics at baseline. further studies sup-
port the use of risk stratification using unsupervised clus-
ter analysis [18,19,27,95,96]. In addition to clinical out-
comes, Sengupta et al. [19] confirmed the reliability of this
methodology by usingCT andCMR to assess the severity of
AS in different clusters. Patients who clustered in the severe
phenotype had a higher aortic valve calcium score, greater
ventricular mass, and more cardiac fibrosis [19]. It is worth
noting that the high-severity phenotype identified by clus-
ter analysis is often associated with cardiac dysfunction and
other structural abnormalities [17–19,27,95,96]. Together,
these AI-generated results highlight that AS is more of a
“myocardial continuum” with sequential upstream damage,
rather than an isolated structural condition. The novel phe-
notyping of AS by supervised prediction and unsupervised
clustering has allowed the issue of AS severity to be ad-
dressed. Risk stratification for discordant AS patients can
now be refined on the basis of a valve-myocardium func-
tional continuum.

2.5 “Intelligent” TAVR: Decoding-Encoding Framework

TAVRhas gained traction as a treatment for severe AS,
extending its application from high-risk surgical candidates
to those at low-risk [97]. AI offers advantages across the
entire TAVR treatment process, including diagnosis, treat-
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Fig. 1. Methodology of supervised and unsupervised learning in clinical AS assessment andmanagement. (A)Workflow illustration
of supervised (classification/regression) and unsupervised (segmentation) learning tasks in the context of AS assessment and manage-
ment. Each step in the workflow varies based on the learning task. Input data, representing training material for the model, is used for
learning. Classification/regression tasks involve algorithms like random forest and support vector machine, while segmentation tasks of-
ten employ convolutional neural networks (CNNs) for encode-decode frameworks. Model output is compared iteratively to the “ground
truth”, represented either by labels/categories or annotations, depending on the task. Loss function convergence is achieved by minimiz-
ing the gap between output and ground truth. The AS severity grading scheme [30] serves as ground truth for classification/regression,
while manual delineations in images such as CT scans [83] serve as gold standards for image segmentation. (B) Unsupervised learning,
exemplified by cluster analysis, utilizes similar input data. Algorithms include model-based clustering (a) [18], topological data analysis
(b) [19], and agglomerative hierarchical clustering (c) [17], with results visualized using heatmaps and dendrograms. Both supervised and
unsupervised models undergo internal and external validation processes. * Convergence of Loss Function refers to the point where the
loss can no longer be reduced under current training settings. AVC, aortic valve calcium; AVA, aortic valve area; PG, peak gradient; RHC,
right heart catheterization; 4D, 4 dimensional; CT, computed tomography; CMR, cardiovascular magnetic resonance; ECHO, echocar-
diography; ECG, electrocardiography; PCG, phonocardiogram; RF, random forest; SVM, support vector machine; CNN, convolutional
neural network; AS, aortic stenosis.

ment and prognosis. Most AI-assisted TAVR models are
currently built using different imaging modalities, includ-
ing ECG [20,98], CT [21,22,72] or cardiac magnetic reso-
nance imaging (MRI) [82,99,100]. Segmentation is a foun-
dation for many models utilizing a so-called “decoding-
encoding” framework. In this setting, the information con-
tained within images is first extracted as “features” in an
abstract way that is understood by computers (decoding).
These features are subsequently reorganized and then re-
constructed by gradually approaching the “ground truth”
(encoding). The “decoding-encoding” framework is thus
deeply embedded in the planning for “intelligent” TAVR.

CT is the most well-established imaging modality for
the pre-procedural evaluation of TAVR [101,102]. The
precision and reproducibility of CT-derived aortic valvu-
lar dimensions are therefore of paramount value, since they
determine the downstream workflow including prothesis
selection, prediction of outcome, and TAVR simulation.
Manual measurement of valvular dimensions is often semi-
automated and shows high repeatability [103,104]. How-
ever, manual measurement is time-consuming, inefficient,
and requires multiple readers to guarantee precision [103],
hence the need to automate the evaluation of patients re-
ferred for TAVR.
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Extensive efforts have been undertaken to automate
pre-TAVR valvular evaluations, particularly by measuring
aortic annular planimetry [7,13]. The process begins by
identifying the aortic valve [13,82,105–107], and is often
referred to as landmark localization, or annular plane de-
tection. Other methods that exploit advances in the field of
CV include segmentation [21,22,72,99,100] and automatic
measurement of the reconstructed geometry of the aortic
root [20,23]. Automatic analysis software based on ECG
rather than CT also has potential for automating the mea-
surement of aortic annular planimetry. This was demon-
strated with the remarkable agreement between CT-derived
results [7,98,108], represented by Aortic Valve Navigator
from Philips [108], and eSie from Siemens [7].

Dimensional analysis of the annular geometry is cru-
cial for selecting the apporpriate transcatheter heart valve
(THV). AI-driven THV sizing has proven reliable, as ob-
served by the excellent agreement between human experts
and AI models [23,98,108–110]. In 2019, Astudillo et al.
[28] demonstrated that an AI model can swiftly and accu-
rately personalize prostheses size based on automated CT
annular measurements. This rule-based approach uses au-
tomated measurements to inform the selection. The final
THV type is determined by two parameters, the perime-
ter for the Self-Expandable Valve and the area for the
Balloon-Expandable Valve [28]. However, this clearly
over-simplified the problem of prothesis selection based on
an exclusive parameter in a singular dimension, given the
complexity of the operative area of TAVR. Attempts have
been made to address this dilemma by incorporating all rel-
evant parameters assessed during pre-operative evaluation
(including raphe length, calcium burden and calcium dis-
tribution) into a THV selection model for the bicuspid aor-
tic valve (BAV). This improved TAVR performance [111],
demonstrating the applicability for a more sophisticated se-
lection algorithm. Indeed, the selection methodology for
THV should include multiple variables, which is clearly
within the scope of AI despite being disregarded in this spe-
cific use case. These results suggest that optimized selec-
tion of THV would be more “intelligent” by embracing the
power of AI.

In addition to recommendations regarding THV siz-
ing, AI could also help guide intra-procedural operations
during TAVR. For example, the advent of real-time seg-
mentation of THV and delivery systems based on intra-
procedural angiography provides broader views that greatly
reduce operational difficulties [107,112]. Furthermore,
procedural techniques such as implantation depth, which
is related to peri-operative conduction abnormality [113],
could become more refined using patient-specific com-
puter simulation (PSCS) [24,25]. The current workflow for
PSCS can be established through either a finite element and
computational fluid dynamics [24,25,114], or with tissue-
mimickingmetamaterial 3D printing [115,116]. Bothmeth-

ods are based on the reconstructed aortic valvemodel gener-
ated from deep learning methods. By exploiting advances
in computational power, PSCS can assess potential inter-
actions between the device and host, thus streamlining the
TAVR process. This includes pre-procedural THV selec-
tion, guiding the procedural operation, and predicting peri-
operative complications based on specific patient charac-
teristics and prior procedural decisions (e.g., implantation
depth). Dowling et al. [114] used PSCS to retrospectively
analyze pre-procedural multi-detector computed topogra-
phy (MDCT) results from 37 patients with BAV who un-
derwent TAVR. Themodel accurately predicted THV frame
deformation, paravalvular regurgitation, and conduction
disturbance after TAVR. The same PSCS system prospec-
tively guided the clinical decisions for 9 patients with BAV
referred for TAVR [25]. This resulted in 3 referrals for
surgery, and alterations in the size and depth of implanta-
tion for THV in 5 patients. In the remaining patient, the
simulation predicted a conduction disturbance and implan-
tation of a pacemaker before TAVR was suggested. Due
to its of individual clinical characteristic analysis, PSCS
holds great promise in predicting TAVR complications, fa-
cilitating TAVR recommendations tailored for each patient.
Furthermore, the algorithm provides a framework for THV
design [117] and possible surveillance of upcoming THV
degradation [118], although further evidence is needed to
substantiate the latter. Other major peri-operative post-
TAVR complications that are predictable from AI models
include bleeding [119,120], permanent pacemaker implan-
tation [121], and early cerebrovascular events [122].

Building on preliminary AI success in predicting post-
TAVR complications, many studies have explored AI pre-
dictions for TAVR patient long-term outcomes. A recent
study by Kwak et al. [92] demonstrated the “random for-
est” ML model could identify CMR markers that indepen-
dently predict mortality risk in AS patients following aor-
tic valve replacement (AVR). These included late gadolin-
ium enhancement (LGE) >2%, extracellular volume frac-
tion >27%, both large (LVEDVi >80 mL/m2) and small
(LVEDVi ≤55 mL/m2) ventricles, and high (>80%) and
low (≤50%) right ventricular ejection fraction [92]. Emerg-
ing ML-based models continue to reveal details describing
the underlying mechanism of AS [92] enabling the predic-
tion of both intra-hospital [123] and long-term TAVR clini-
cal outcomes [124–126]. Additionally, 3D AI models have
heightened sensitive to nuanced shifts in both global and
regional myocardial plasticity, namely LV remodeling be-
fore and after TAVR and which has important prognostic
value [75]. Nonetheless, the advent of AI-empowered CT
fractional flow reserve has enabled the prediction of ad-
verse clinical outcomes in TAVR patients with concomitant
coronary heart disease [127,128]. In tandem with the de-
velopment of AI, risk stratification models for AS patients
undergoing TAVR are expected to significantly improve in
the future. This should in turn facilitate and refine AS pa-
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tient management. Taken together, the emerging evidence
has prompted further integration of AI into current TAVR
planning, procedures, and long-term management.

3. Limitations and Challenges

Despite being an advanced clinical decision support
tool, significant questions have been raised about the appli-
cation of AI in the AS clinical pathway. The major lim-
itation of AI that hinders its widespread application in AS
management is that the models depend heavily on the quan-
tity and quality of data. This limitation makes AI mod-
els susceptible to the same flaws that characterize tradi-
tional statistical methods, especially in the field of clinical
medicine. First, echocardiography, the most common form
of imaging data in AS patients, has lower resolution and a
higher requirement for expertise compared to other imag-
ing modalities. This can introduce bias into the AI models
because of “noise” (e.g., artifacts, inter- and intra-observer
variability). For example, a prediction model could be
trained on a dataset of echocardiography images suggesting
AS, but if most of the images are marred by speckle noise
(often due to inadequate expertise), a limited number of im-
ages may reflect reduced AVA. The deeply flawed dataset
would inevitably produce a heavily biased model that is
prone to identify AS-echocardiography based on speckle
noise rather than on true pathology, such as reduced AVA.
Fortunately, the increasing demand for CT dictated by the
expansion of TAVI has led to additional resources for AI-
AS research with higher resolution than echocardiography.
Second, when presented with an imbalanced dataset con-
taining skewed data, irrespective of the data quality [129],
the AI models will also be heavily biased towards “noise”
due to the distribution of the training data, i.e., patient selec-
tion. Third, existing regulations to protect patient privacy
also limit data exchange [130], thus current AI research in
clinical settings is limited to local patient data from a single
institution, and therefore lacks generalizability. For exam-
ple, CMR images from different hospitals are usually pro-
duced using different types of machines and under different
settings. The resulting differences in the images present as
“noise” to the AI models and blur the essential data, thus
leading to a systematic dataset shift [131]. This could ex-
plain why NLP models that are well-trained in one EHR
system performworse in another [62]. Hence there is a clear
need to mitigate the problem caused by restrictions on data-
sharing between health centers and institutions, possibly by
using newly developed federated learning systems that do
not rely on data sharing [125]. The availability of sufficient
qualified data from AS patients will be resolved in future
by the increasing use of other imaging modalities with bet-
ter resolution, together with the introduction of other tech-
niques in computer science such as federated learning and
adversarial examples. However, the incorporation of larger
datasets is still restricted by computational power, since the

processing of more data requires exponentially increased
operations, especially for tasks involving CV (e.g., segmen-
tation).

Another problem is the inability to interpret AI mod-
els due to the abstraction of features, such as the contour
of the aortic root in CV tasks. This creates a “black box”
phenomenon making it difficult to assess model bias, while
also failing to provide a statistically convincing pathophys-
iologic explanation for the associations or causality. How-
ever, continued attempts have been made to remove “black
box” ambiguity by providing human-explainable features
[132,133] and bymimicking the attentionmechanism of hu-
man vision (i.e., transformer) [134]. These may shed light
on the enigmatic yet exciting journey of human intelligence
being able to comprehend AI.

Furthermore, it is important to acknowledge the inher-
ent operator-dependence of echocardiography. AI models
based on such data must account for variations introduced
by different operators, which could impact the accuracy
and generalizability of these models [135]. This operator-
dependent variability poses a challenge in ensuring consis-
tent and reliable AI predictions across different healthcare
settings. Strategies to address this limitation could involve
the incorporation of operator-specific factors into the train-
ing data, or the introduction of normalization techniques
to account for operator introduced variability from differ-
ent echocardiography practitioners [83]. Furthermore, on-
going efforts to create standardized acquisition protocols
could help to mitigate operator-related discrepancies and
improve the reliability of AI models that use echocardio-
graphic data. Nevertheless, the moderate performance of
AI-based decision systems highlights the need for cautious
adoption [136]. While AI can contribute to AS clinical
pathways and its applications show promise for expansion,
human oversight for the interpretation of findings remains
essential given the acknowledged limitations.

4. Future Perspectives
In summary, the integration of AI into AS manage-

ment holds great potential, but also introduces several
challenges that require strategic solutions. Collaborative
initiatives including multi-center partnerships and feder-
ated learning can enhance the representative datasets with
greater quality and diversity of data, thereby improving the
accuracy and impartiality of AI models. Considering the
operator-dependent nature of echocardiography, future AI
models should be designed to minimize the impact of vari-
ability between different practitioners. The inclusion of
operator-specific features and of normalization techniques
should ensure consistent and dependable AI predictions.

Furthermore, the use of techniques that give transpar-
ent and explainable predictions can increase the clinicians’
confidence in AI-assisted decisions. In view of the impor-
tance of the “interpretability” of AI models, this should fa-
cilitate their seamless integration into clinical workflows.
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Validation across a wide array of patient populations is crit-
ical for confirming the clinical efficacy of AI tools. Col-
laborative endeavors involving clinicians, AI researchers,
and regulatory bodies can establish rigorous validation pro-
tocols to ensure the implementation of AI is both safe and
effective. A collaborative approach that also combines hu-
man expertise with AI capabilities can yield optimal results.
AI can assist clinicianswith risk stratification, thus enabling
personalized treatment strategies and interventions. While
AI can provide predictions, human oversight and interpre-
tation of the predicted results remains indispensable for val-
idation and for ethical considerations. This is particularly
important when applying AI models in clinical studies that
involve small and specific patient populations.

Addressing equity concerns during the application of
AI is complex but imperative. Initiatives that focus on eq-
uitable data collection, algorithm development, and AI de-
ployment can mitigate bias and ensure equitable access to
accurate diagnosis and treatment. In summary, future ap-
plications of AI for the management of AS appear promis-
ing. By meeting challenges head-on and fostering collab-
oration, we can look forward to an era where AI enriches
clinical decision-making, improves patient outcome, and
revolutionizes the management of AS.

5. Conclusions
This review has highlighted recent applications of

AI for the assessment and management of AS. AI shows
promise not only for early detection of the valvular condi-
tion and accurate diagnosis, but also for appropriate refer-
ral and treatment decisions of AS patients. However, it is
important to recognize the strength AI depends on the data
utilized for model development, thus making AI vulnerable
to bias. Although AI has many possible applications, the
realization of its full potential requires the collaboration of
human and machine, especially within the complex context
of AS. Further studies into the potential of AI and its syn-
ergistic applications for improving the screening, diagnosis
and management of AS are therefore warranted.
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