IMR Press / FBL / Volume 12 / Issue 13 / DOI: 10.2741/2431

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article

Response and adaptation of skeletal muscle to exercise – the role of reactive oxygen species

Show Less
1 Medical Clinic, Department of Sports Medicine, University of Tuebingen, Germany
Front. Biosci. (Landmark Ed) 2007, 12(13), 4826–4838; https://doi.org/10.2741/2431
Published: 1 September 2007
Abstract

In the last 30 years, the role of reactive oxygen species (ROS) in exercise physiology has received considerable attention. Acute physical exertion has been shown to induce an augmented generation of ROS in skeletal muscle via different mechanisms. There is evidence that ROS formation in response to vigorous physical exertion can result in oxidative stress. More recent research has revealed the important role of ROS as signaling molecules. ROS modulate contractile function in unfatigued and fatigued skeletal muscle. Furthermore, involvement of ROS in the modulation of gene expression via redox-sensitive transcription pathways represents an important regulatory mechanism, which has been suggested to be involved in the process of training adaptation. In this context, the adaptation of endogenous antioxidant systems in response to regular training reflects a potential mechanism responsible for augmented tolerance of skeletal muscle to exercise-induced stress. The present review outlines current knowledge and more recent findings in this area by focussing on major sources of ROS production, oxidative stress, tissue damage, contractile force, and redox-regulated gene expression in exercising skeletal muscle.

Keywords
Skeletal Muscle
Exercise
Training
Reactive Oxygen Species
Ros
Oxidative Stress
Redox-Regulation
Adaptation
Review
Share
Back to top