IMR Press / FBL / Volume 29 / Issue 3 / DOI: 10.31083/j.fbl2903097
Open Access Original Research
The Prognostic and Immune Significance of BZW2 in Pan-Cancer and its Relationship with Proliferation and Apoptosis of Cervical Cancer
Chaolin Li1,†Qin Li1,†Li Li1Siyu Sun1Xun Lei1,*
Show Less
1 Jinniu Maternity and Child Health Hospital of Chengdu, 610000 Chengdu, Sichuan, China
*Correspondence: JNFY_leixun@163.com (Xun Lei)
These authors contributed equally.
Front. Biosci. (Landmark Ed) 2024, 29(3), 97; https://doi.org/10.31083/j.fbl2903097
Submitted: 20 October 2023 | Revised: 12 December 2023 | Accepted: 27 December 2023 | Published: 11 March 2024
Copyright: © 2024 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.
Abstract

Background: Basic leucine zipper and W2 domains 2 (BZW2), a member of the basic domain leucine zipper superfamily of transcription factors, has been implicated in the development and progression of various cancers. However, the precise biological role of BZW2 in pan-cancer datasets remains to be explored. This study aimed to assess the prognostic significance of BZW2 and its immune-related signatures in various tumors. Methods: Our study investigated the expression, epigenetic modifications, and clinical prognostic relevance of BZW2 using multi-omics data in different cancer types. Additionally, the immunological characteristics, tumor stemness, drug sensitivity, and correlation of BZW2 with immunotherapy response were explored. Finally, in vitro experiments were conducted to assess the impact of BZW2 knockdown on Hela cells, a cell line derived from cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Results: BZW2 exhibited elevated expression levels in various tumor tissues and significantly impacted the prognosis of different cancer types. BZW2 emerged as an independent prognostic factor in CESC. We found that copy number amplification and methylation levels of BZW2 were associated with its mRNA expression. Immunological analyses revealed that BZW2 shapes a non-inflamed immunosuppressive tumor microenvironment across multiple cancers. Furthermore, our cell experiments demonstrated that BZW2 knockdown reduced proliferation, migration, and apoptosis activities in CESC cells. Conclusions: BZW2 promotes cancer progression by shaping a non-inflamed immunosuppressive tumor microenvironment. Additionally, BZW2 was shown to significantly influence the proliferation, migration, and apoptosis of CESC cells.

Keywords
BZW2
CESC
immunity therapy
apoptosis
biomarkers
Funding
22FXZD04/scientific research project of Sichuan Maternal and Child Health Association
JNKY2021-52/general Project of Scientific Research Project of Jinniu District Medical Association
Figures
Fig. 1.
Share
Back to top