IMR Press / JIN / Volume 23 / Issue 1 / DOI: 10.31083/j.jin2301014
Open Access Original Research
Heliox Protects SH-SY5Y Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Ferroptosis
Show Less
1 Department of Anesthesiology, Zhongshan Hospital, Xiamen University, 361004 Xiamen, China
*Correspondence: xiongwei200904@163.com (Wei Xiong)
J. Integr. Neurosci. 2024, 23(1), 14; https://doi.org/10.31083/j.jin2301014
Submitted: 10 April 2023 | Revised: 1 June 2023 | Accepted: 13 June 2023 | Published: 16 January 2024
Copyright: © 2024 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.
Abstract

Background: Heliox shows protective effects against acute focal ischemia-reperfusion injury in the brain. However, further research is needed to unveil the intricate molecular mechanisms involved. Determining how heliox affects ferroptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells as well as the underlying mechanism was the goal of the current work. Methods: With the use of 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA), JC-1, and methyl thiazolyl tetrazolium, we assessed the survival, reactive oxygen species (ROS), and mitochondrial membrane potential in SH-SY5Y cells after they had been exposed to OGD/R and heliox. The expression of molecules associated with ferroptosis and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway was analyzed using quantitative polymerase chain reaction (PCR) and immunoblotting, while malondialdehyde (MDA), oxidized glutathione disulfide (GSSG), ferrous ion (Fe2+), and reduced glutathione (GSH) levels were evaluated using biochemical kits. Results: OGD/R treatment reduced the GSH to GSSG ratio; the potential of the mitochondrial membrane; the expression of the proteins GSH, SLC7A11, and glutathione peroxidase 4 (GPX4); and the ability of SH-SY5Y cells to survive. In contrast, OGD/R treatment increased the expression of cyclooxygenase-2 (COX2), ACSL4, and ferritin heavy chain 1 (FTH1) proteins, the production of MDA and GSSG, and the levels of ROS and Fe2+. However, heliox effectively mitigated all these OGD/R-induced effects. Furthermore, in OGD/R-treated SH-SY5Y cells, heliox administration stimulated the PI3K/AKT pathway while suppressing the nuclear factor-κB (NF-κB) pathway. When MK-2206, an AKT inhibitor, was applied concurrently to the cells, these outcomes were reversed. Conclusions: Heliox prevents OGD/R from causing ferroptosis in SH-SY5Y cells by activating the PI3K/AKT pathway. This suggests a promising therapeutic potential for heliox use in the management of ischemia/reperfusion injury.

Keywords
heliox
oxygen-glucose deprivation/reoxygenation
ferroptosis
PI3K/AKT pathway
Funding
3502Z20224ZD1056/Xiamen medical and health guiding project
Figures
Fig. 1.
Share
Back to top